Guida Cai, Xi Zhang, Jiexi Jiao, Weijie Du, Meiling Yan
{"title":"Targeting the cGAS-STING Pathway to Modulate Immune Inflammation in Diabetes and Cardiovascular Complications: Mechanisms and Therapeutic Insights.","authors":"Guida Cai, Xi Zhang, Jiexi Jiao, Weijie Du, Meiling Yan","doi":"10.3390/cimb47090750","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2DM), characterized by insulin resistance and chronic hyperglycemia, markedly increases the incidence and mortality of cardiovascular disease (CVD). Emerging preclinical evidence identifies the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway as a critical mediator of diabetic cardiovascular inflammation. Metabolic stressors in T2DM-hyperglycemia, lipotoxicity, and mitochondrial dysfunction-induce leakage of mitochondrial and microbial double-stranded DNA into the cytosol, where it engages cGAS and activates STING. Subsequent TBK1/IRF3 and NF-κB signaling drives low-grade inflammation across cardiomyocytes, endothelial cells, macrophages, and fibroblasts. Genetic deletion of cGAS or STING in high-fat-diet-fed diabetic mice reduces NLRP3 inflammasome-mediated pyroptosis, limits atherosclerotic lesion formation, and preserves cardiac contractile performance. Pharmacological inhibitors, including RU.521 (cGAS antagonist), C-176/H-151 (STING palmitoylation blockers), and the TBK1 inhibitor amlexanox, effectively lower pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and improve left ventricular ejection fraction in diabetic cardiomyopathy and ischemia-reperfusion injury models. Novel PROTAC degraders targeting cGAS/STING and natural products such as Astragaloside IV and Tanshinone IIA further support the pathway's druggability. Collectively, these findings position the cGAS-STING axis as a central molecular nexus linking metabolic derangement to cardiovascular pathology in T2DM and underscore its inhibition or targeted degradation as a promising dual cardiometabolic therapeutic strategy.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb47090750","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Type 2 diabetes mellitus (T2DM), characterized by insulin resistance and chronic hyperglycemia, markedly increases the incidence and mortality of cardiovascular disease (CVD). Emerging preclinical evidence identifies the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway as a critical mediator of diabetic cardiovascular inflammation. Metabolic stressors in T2DM-hyperglycemia, lipotoxicity, and mitochondrial dysfunction-induce leakage of mitochondrial and microbial double-stranded DNA into the cytosol, where it engages cGAS and activates STING. Subsequent TBK1/IRF3 and NF-κB signaling drives low-grade inflammation across cardiomyocytes, endothelial cells, macrophages, and fibroblasts. Genetic deletion of cGAS or STING in high-fat-diet-fed diabetic mice reduces NLRP3 inflammasome-mediated pyroptosis, limits atherosclerotic lesion formation, and preserves cardiac contractile performance. Pharmacological inhibitors, including RU.521 (cGAS antagonist), C-176/H-151 (STING palmitoylation blockers), and the TBK1 inhibitor amlexanox, effectively lower pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and improve left ventricular ejection fraction in diabetic cardiomyopathy and ischemia-reperfusion injury models. Novel PROTAC degraders targeting cGAS/STING and natural products such as Astragaloside IV and Tanshinone IIA further support the pathway's druggability. Collectively, these findings position the cGAS-STING axis as a central molecular nexus linking metabolic derangement to cardiovascular pathology in T2DM and underscore its inhibition or targeted degradation as a promising dual cardiometabolic therapeutic strategy.
期刊介绍:
Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.