{"title":"Effect of Dietary Exposure to Low-Density Polyethylene Microplastics and Their Potential Role as Estrogen Vectors In Vivo.","authors":"Noura Al-Jandal, Azad Ismail Saheb, Abdulaziz Alkhubaizi, Abrar Akbar, Enas Al-Hasan, Sumaiah Hussain, Hamad Al-Mansour","doi":"10.3390/cimb47090701","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics (MPs) are a growing environmental concern due to their ability to adsorb hazardous chemicals, such as estrogens, and be ingested by marine organisms. This study focuses on low-density polyethylene (LDPE), a polymer widely used in Kuwait, to assess its role as a carrier of endocrine-disrupting chemicals (EDCs), specifically estrogens. Biological effects were evaluated using biomarkers such as cytochrome P450 1A (CYP1A) and vitellogenin (Vtg) gene expression. Virgin LDPE MPs were exposed to influent and effluent from a wastewater treatment plant (WWTP) for four weeks to facilitate estrogen absorption. The MPs were then incorporated into fish feed pellets for dietary exposure experiments. Fish were divided into three treatment groups-exposed to either virgin MPs, WWTP-influent MPs, or WWTP-effluent MPs-and monitored over four weeks. The results showed that WWTP-exposed MPs carried detectable levels of estrogen, leading to physiological effects on yellowfin bream. Fish in the control group, which received MP-enriched diets without estrogen, experienced significant weight loss due to nutrient deprivation. In contrast, weight patterns in the treatment groups were influenced by estrogen exposure. The condition factor (CF) decreased across groups during the experiment but remained within acceptable health ranges. A significant reduction in the hepatosomatic index (HSI) was observed in the effluent-exposed group, likely due to lower estrogen levels reducing physiological stress. The findings confirm that LDPE MPs can act as carriers for estrogens, impairing fish growth and metabolism while disrupting biological processes such as cytochrome oxidase function. These results highlight the potential risks of MPs in marine ecosystems and underscore the need for further research to understand their long-term effects.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468738/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb47090701","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) are a growing environmental concern due to their ability to adsorb hazardous chemicals, such as estrogens, and be ingested by marine organisms. This study focuses on low-density polyethylene (LDPE), a polymer widely used in Kuwait, to assess its role as a carrier of endocrine-disrupting chemicals (EDCs), specifically estrogens. Biological effects were evaluated using biomarkers such as cytochrome P450 1A (CYP1A) and vitellogenin (Vtg) gene expression. Virgin LDPE MPs were exposed to influent and effluent from a wastewater treatment plant (WWTP) for four weeks to facilitate estrogen absorption. The MPs were then incorporated into fish feed pellets for dietary exposure experiments. Fish were divided into three treatment groups-exposed to either virgin MPs, WWTP-influent MPs, or WWTP-effluent MPs-and monitored over four weeks. The results showed that WWTP-exposed MPs carried detectable levels of estrogen, leading to physiological effects on yellowfin bream. Fish in the control group, which received MP-enriched diets without estrogen, experienced significant weight loss due to nutrient deprivation. In contrast, weight patterns in the treatment groups were influenced by estrogen exposure. The condition factor (CF) decreased across groups during the experiment but remained within acceptable health ranges. A significant reduction in the hepatosomatic index (HSI) was observed in the effluent-exposed group, likely due to lower estrogen levels reducing physiological stress. The findings confirm that LDPE MPs can act as carriers for estrogens, impairing fish growth and metabolism while disrupting biological processes such as cytochrome oxidase function. These results highlight the potential risks of MPs in marine ecosystems and underscore the need for further research to understand their long-term effects.
期刊介绍:
Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.