Xue Wang, Jianbo Wang, Hua Hua, Ping Wei, Xue Chen, Yusheng Peng, Li Liu, Dongmei Yu, Xiaozhou You, Siye Yang
{"title":"Geniposide Inhibits Oral Squamous Cell Carcinoma by Regulating PI3K-Akt Signaling-Mediated Apoptosis: A Multi-Method Validation Study.","authors":"Xue Wang, Jianbo Wang, Hua Hua, Ping Wei, Xue Chen, Yusheng Peng, Li Liu, Dongmei Yu, Xiaozhou You, Siye Yang","doi":"10.3390/cimb47090786","DOIUrl":null,"url":null,"abstract":"<p><p><i>Gardenia jasminoides</i> J.Ellis is an important medicinal and edible resource. The fruit of <i>Gardenia jasminoides</i> J.Ellis contains a natural iridoid called geniposide, which has the ability to dramatically suppress the growth of a number of cancer cell lines. This work examined the impact and potential mechanism of action of geniposide on oral squamous cell carcinoma using network pharmacology, molecular docking, molecular dynamics simulation, and cellular experiments. Based on network pharmacology, 145 potential targets of geniposide in the treatment of OSCC were found. The top five core targets were selected according to the degree values of the nodes, AKT1, EGFR, SRC, HSP90AA1, and PIK3R1, which involved signaling pathways and biological processes, such as the PI3K-Akt signaling pathway, pathways in cancer, phosphorylation, and the regulation of the apoptotic process. Molecular docking showed that geniposide exhibited good binding ability with the core targets AKT1 and EGFR. Molecular dynamics simulations further confirmed the stability of the binding between geniposide and the targets. The results of cell experiments showed that the activity of HSC-3 cells was dose-dependently inhibited by geniposide, and AO/EB staining showed that geniposide was able to induce programmed apoptosis. Meanwhile, it was found that the expressions of p-EGFR, p-AKT, and Bcl-2 were downregulated in HSC-3, and the expressions of PTEN, Bax, and Caspase-3 were upregulated. Geniposide may inhibit OSCC by affecting the PI3K-Akt signaling pathway and apoptotic process by regulating the expressions of p-EGFR, p-AKT, Bcl-2, Bax, Caspase-3, and PTEN.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468547/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb47090786","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gardenia jasminoides J.Ellis is an important medicinal and edible resource. The fruit of Gardenia jasminoides J.Ellis contains a natural iridoid called geniposide, which has the ability to dramatically suppress the growth of a number of cancer cell lines. This work examined the impact and potential mechanism of action of geniposide on oral squamous cell carcinoma using network pharmacology, molecular docking, molecular dynamics simulation, and cellular experiments. Based on network pharmacology, 145 potential targets of geniposide in the treatment of OSCC were found. The top five core targets were selected according to the degree values of the nodes, AKT1, EGFR, SRC, HSP90AA1, and PIK3R1, which involved signaling pathways and biological processes, such as the PI3K-Akt signaling pathway, pathways in cancer, phosphorylation, and the regulation of the apoptotic process. Molecular docking showed that geniposide exhibited good binding ability with the core targets AKT1 and EGFR. Molecular dynamics simulations further confirmed the stability of the binding between geniposide and the targets. The results of cell experiments showed that the activity of HSC-3 cells was dose-dependently inhibited by geniposide, and AO/EB staining showed that geniposide was able to induce programmed apoptosis. Meanwhile, it was found that the expressions of p-EGFR, p-AKT, and Bcl-2 were downregulated in HSC-3, and the expressions of PTEN, Bax, and Caspase-3 were upregulated. Geniposide may inhibit OSCC by affecting the PI3K-Akt signaling pathway and apoptotic process by regulating the expressions of p-EGFR, p-AKT, Bcl-2, Bax, Caspase-3, and PTEN.
期刊介绍:
Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.