Recent development and applications of emerging biosensing technologies and on-site analytical devices for food adulteration detection: a critical review.
{"title":"Recent development and applications of emerging biosensing technologies and on-site analytical devices for food adulteration detection: a critical review.","authors":"Biru Han, Xinna Xie, Yina Zhao, Jingwen Zhang, Xinyan Yang, Yujun Jiang, Wei Zhang, Xianlong Zhang","doi":"10.1080/10408398.2025.2564216","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing incidence of food adulteration poses a significant challenge to global health and food safety. Although current detection methods can effectively complete food adulteration detection, they usually require complex pre-preparation processes and professional technicians to some extent. Therefore, the development of rapid and on-site detection technologies for food adulteration is imperative. Recently, biosensing technologies and portable devices have been developed for efficient and precise food adulteration detection. In this review, the strengths and weaknesses of conventional food adulteration detection methods were compared. The recent development of emerging biosensing technologies (i.e., antibody-based biosensors, aptamer-based biosensors, molecular imprinted polymers (MIPs)-based biosensors, and clustered regularly interspaced short palindromic repeats-associated proteins (CRISPR/Cas) systems-based biosensors) and portable analytical devices (e.g., lateral flow assays (LFAs), microfluidic devices, handheld Raman, and nanopore-based devices) for food adulteration detection has been comprehensively summarized and discussed. Remarkably, the challenges and opportunities in this field have been proposed.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-20"},"PeriodicalIF":8.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2025.2564216","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing incidence of food adulteration poses a significant challenge to global health and food safety. Although current detection methods can effectively complete food adulteration detection, they usually require complex pre-preparation processes and professional technicians to some extent. Therefore, the development of rapid and on-site detection technologies for food adulteration is imperative. Recently, biosensing technologies and portable devices have been developed for efficient and precise food adulteration detection. In this review, the strengths and weaknesses of conventional food adulteration detection methods were compared. The recent development of emerging biosensing technologies (i.e., antibody-based biosensors, aptamer-based biosensors, molecular imprinted polymers (MIPs)-based biosensors, and clustered regularly interspaced short palindromic repeats-associated proteins (CRISPR/Cas) systems-based biosensors) and portable analytical devices (e.g., lateral flow assays (LFAs), microfluidic devices, handheld Raman, and nanopore-based devices) for food adulteration detection has been comprehensively summarized and discussed. Remarkably, the challenges and opportunities in this field have been proposed.
期刊介绍:
Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition.
With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.