Haojing Chang, Li Shao, Ke Tao, Xiangjun Chen, Hehe Liao, Wang Liao, Bei Xue, Shaokang Wang
{"title":"Exploring CCND1 as a Key Target of <i>Acorus calamus</i> Against RSV Infection: Network Pharmacology, Molecular Docking, and Bioinformatics Analysis.","authors":"Haojing Chang, Li Shao, Ke Tao, Xiangjun Chen, Hehe Liao, Wang Liao, Bei Xue, Shaokang Wang","doi":"10.3390/cimb47090695","DOIUrl":null,"url":null,"abstract":"<p><p><i>Acorus calamus</i>, a traditional Tibetan medicine with potential antiviral activity but undefined mechanisms, was studied for its anti-respiratory syncytial virus (RSV) mechanisms using network pharmacology and molecular docking, given RSV's substantial disease burden and lack of specific therapies. The primary active compounds were identified and analyzed through a literature search, the PubChem database, and the SwissADME. Relevant targets were sifted through the SwissTargetPrediction platform, OMIM, and GeneCards databases. Common targets underwent enrichment analysis using Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Molecular docking and GEO datasets were used for further analysis. Among the screened data, 268 targets were associated with <i>Acorus calamus</i> compounds and 1633 with RSV. KEGG analysis of the shared targets revealed potential therapeutic roles via the PI3K-Akt and JAK-STAT signaling pathways. Molecular docking results demonstrated that CCND1, EGFR, and SRC exhibited relatively lower binding energies with compounds in comparison to other proteins, suggesting better interactions, and GEO-derived RSV datasets further validated CCND1's significance. This study demonstrates <i>Acorus calamus</i>'s anti-RSV activity and its potential mechanism, providing a theoretical foundation for the effective active ingredients of <i>Acorus calamus</i> targeting CCND1 as a strategy to combat RSV infection.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468655/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb47090695","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acorus calamus, a traditional Tibetan medicine with potential antiviral activity but undefined mechanisms, was studied for its anti-respiratory syncytial virus (RSV) mechanisms using network pharmacology and molecular docking, given RSV's substantial disease burden and lack of specific therapies. The primary active compounds were identified and analyzed through a literature search, the PubChem database, and the SwissADME. Relevant targets were sifted through the SwissTargetPrediction platform, OMIM, and GeneCards databases. Common targets underwent enrichment analysis using Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Molecular docking and GEO datasets were used for further analysis. Among the screened data, 268 targets were associated with Acorus calamus compounds and 1633 with RSV. KEGG analysis of the shared targets revealed potential therapeutic roles via the PI3K-Akt and JAK-STAT signaling pathways. Molecular docking results demonstrated that CCND1, EGFR, and SRC exhibited relatively lower binding energies with compounds in comparison to other proteins, suggesting better interactions, and GEO-derived RSV datasets further validated CCND1's significance. This study demonstrates Acorus calamus's anti-RSV activity and its potential mechanism, providing a theoretical foundation for the effective active ingredients of Acorus calamus targeting CCND1 as a strategy to combat RSV infection.
期刊介绍:
Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.