Redox Regulation of Microvascular Physiology and Pathophysiology: Insights into Therapeutic Strategies and Limitations.

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
David A Bulger, Zhan Zhang, Ruinan Hu, Esha K Dave, Puja K Mehta, Kathy K Griendling, Alejandra Valdivia
{"title":"Redox Regulation of Microvascular Physiology and Pathophysiology: Insights into Therapeutic Strategies and Limitations.","authors":"David A Bulger, Zhan Zhang, Ruinan Hu, Esha K Dave, Puja K Mehta, Kathy K Griendling, Alejandra Valdivia","doi":"10.1177/15230864251372607","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Significance:</i></b> Oxidative mechanisms contribute to both vascular function and pathogenesis of many diseases, but their role in the microvasculature remains poorly understood. <b><i>Recent Advances:</i></b> The role of reactive oxygen and reactive nitrogen species (ROS/RNS) in the vasculature has been well-established for years. Our knowledge of microvascular responses to ROS/RNS has relied on extrapolation of studies performed in large vessels or cultured endothelial cells from large vessels. In healthy tissue, ROS/RNS are implicated in microvascular cell survival and death, angiogenesis, vasodilation, and barrier function, and, in disease, they contribute to increased permeability, leukocyte extravasation, and inflammation. Redox-mediated microvascular dysfunction underlies a multitude of conditions, including cardiovascular diseases, autoimmune diseases, infectious diseases, hemoglobinopathies, inflammatory diseases, vasculitides, and metabolic diseases. <b><i>Critical Issues:</i></b> New single-cell RNA sequencing studies reveal that endothelial cells from different vascular beds have unique gene signatures. Moreover, microvessels respond differently than large vessels, yet findings are frequently extrapolated across vascular beds. Technical challenges have limited our ability to reliably link alterations in ROS/RNS levels to microvascular outcomes. Moreover, successful therapeutics targeting redox signaling in general and in the microvasculature in particular are lacking. While numerous associations exist between common diseases and the microvasculature, the precise contribution of redox-mediated microvascular dysfunction to disease pathogenesis has been challenging. <b><i>Future Directions:</i></b> Additional research in organ-specific microvasculature focusing on the redox mechanisms underlying microvascular function and dysfunction is needed, as well as the development of new targeted therapeutics that can be locally delivered. Comparison of redox responses between different diseases may uncover general mechanisms to exploit therapeutically. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/15230864251372607","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Oxidative mechanisms contribute to both vascular function and pathogenesis of many diseases, but their role in the microvasculature remains poorly understood. Recent Advances: The role of reactive oxygen and reactive nitrogen species (ROS/RNS) in the vasculature has been well-established for years. Our knowledge of microvascular responses to ROS/RNS has relied on extrapolation of studies performed in large vessels or cultured endothelial cells from large vessels. In healthy tissue, ROS/RNS are implicated in microvascular cell survival and death, angiogenesis, vasodilation, and barrier function, and, in disease, they contribute to increased permeability, leukocyte extravasation, and inflammation. Redox-mediated microvascular dysfunction underlies a multitude of conditions, including cardiovascular diseases, autoimmune diseases, infectious diseases, hemoglobinopathies, inflammatory diseases, vasculitides, and metabolic diseases. Critical Issues: New single-cell RNA sequencing studies reveal that endothelial cells from different vascular beds have unique gene signatures. Moreover, microvessels respond differently than large vessels, yet findings are frequently extrapolated across vascular beds. Technical challenges have limited our ability to reliably link alterations in ROS/RNS levels to microvascular outcomes. Moreover, successful therapeutics targeting redox signaling in general and in the microvasculature in particular are lacking. While numerous associations exist between common diseases and the microvasculature, the precise contribution of redox-mediated microvascular dysfunction to disease pathogenesis has been challenging. Future Directions: Additional research in organ-specific microvasculature focusing on the redox mechanisms underlying microvascular function and dysfunction is needed, as well as the development of new targeted therapeutics that can be locally delivered. Comparison of redox responses between different diseases may uncover general mechanisms to exploit therapeutically. Antioxid. Redox Signal. 00, 000-000.

微血管生理学和病理生理学的氧化还原调节:对治疗策略和局限性的见解。
意义:氧化机制参与许多疾病的血管功能和发病机制,但其在微血管系统中的作用尚不清楚。近年来,活性氧和活性氮(ROS/RNS)在血管系统中的作用已经得到了广泛的研究。我们对微血管对ROS/RNS反应的了解依赖于在大血管或培养的大血管内皮细胞中进行的研究的推断。在健康组织中,ROS/RNS与微血管细胞的存活和死亡、血管生成、血管舒张和屏障功能有关,在疾病中,它们有助于通透性增加、白细胞外渗和炎症。氧化还原介导的微血管功能障碍是多种疾病的基础,包括心血管疾病、自身免疫性疾病、传染病、血红蛋白病、炎症性疾病、血管炎和代谢性疾病。关键问题:新的单细胞RNA测序研究表明,来自不同血管床的内皮细胞具有独特的基因特征。此外,微血管的反应与大血管不同,但研究结果经常被推断为跨血管床。技术上的挑战限制了我们将ROS/RNS水平的改变与微血管结果可靠地联系起来的能力。此外,目前还缺乏针对氧化还原信号的成功治疗方法,特别是针对微血管的治疗方法。虽然常见疾病与微血管系统之间存在许多关联,但氧化还原介导的微血管功能障碍对疾病发病机制的确切贡献一直具有挑战性。未来方向:需要对微血管功能和功能障碍的氧化还原机制进行更多的器官特异性微血管研究,以及开发新的局部靶向治疗方法。比较不同疾病之间的氧化还原反应可能揭示一般机制,以开发治疗。Antioxid。氧化还原信号:00000 - 00000。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信