A New Way to Use Hydrophobic Deep Eutectic Solvents: Improved Lead Detection Using an Ion-Selective Electrode with a Polymer Membrane Modified by them.
{"title":"A New Way to Use Hydrophobic Deep Eutectic Solvents: Improved Lead Detection Using an Ion-Selective Electrode with a Polymer Membrane Modified by them.","authors":"Cecylia Wardak, Malgorzata Grabarczyk, Mersiha Suljkanović, Jasmin Suljagić, Magdalena Wardak","doi":"10.1002/cphc.202500500","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the use of terpene-based hydrophobic deep eutectic solvents (HDESs) in the preparation of polymeric membrane ion-selective electrodes is presented. HDES obtained from terpenes (menthol and thymol) and octanoic acid are used as a new component of polymeric membrane of potentiometric sensors sensitive to lead ions. Electrodes containing different amounts of HDES in the membrane (from 1 to 12 % wt./wt.) are prepared, and potentiometric measurements are carried out for these electrodes to determine the detection limit, the slope of the characteristic, and the response linear range. Based on the analysis of electrode performance, it is found that the optimum concentration of HDES in the membrane is 5 wt%. For such membranes, a more detailed study is carried out using a solid contact sensor. Selectivity toward interfering species as well as potential stability and reversibility, optimum pH range, effect of light, and presence of gases in the sample solution are investigated for such sensors. The obtained measurement results indicate that the tested sensor containing HDES in the membrane has good analytical parameters, and excellent selectivity (log K ≤ -4.4). It has been successfully used to determine lead in real environmental water samples after a brief pretreatment with XAD-7 resin.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202500500"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202500500","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the use of terpene-based hydrophobic deep eutectic solvents (HDESs) in the preparation of polymeric membrane ion-selective electrodes is presented. HDES obtained from terpenes (menthol and thymol) and octanoic acid are used as a new component of polymeric membrane of potentiometric sensors sensitive to lead ions. Electrodes containing different amounts of HDES in the membrane (from 1 to 12 % wt./wt.) are prepared, and potentiometric measurements are carried out for these electrodes to determine the detection limit, the slope of the characteristic, and the response linear range. Based on the analysis of electrode performance, it is found that the optimum concentration of HDES in the membrane is 5 wt%. For such membranes, a more detailed study is carried out using a solid contact sensor. Selectivity toward interfering species as well as potential stability and reversibility, optimum pH range, effect of light, and presence of gases in the sample solution are investigated for such sensors. The obtained measurement results indicate that the tested sensor containing HDES in the membrane has good analytical parameters, and excellent selectivity (log K ≤ -4.4). It has been successfully used to determine lead in real environmental water samples after a brief pretreatment with XAD-7 resin.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.