Astrocyte-derived stanniocalcin-1 orchestrates epileptogenesis through NF-κB-dependent neuroinflammation.

IF 3.4 3区 生物学 Q3 CELL BIOLOGY
Xinyue Guan, Wenzeng Wang, Qiannan Song, Kexin Li, Hong Chen
{"title":"Astrocyte-derived stanniocalcin-1 orchestrates epileptogenesis through NF-κB-dependent neuroinflammation.","authors":"Xinyue Guan, Wenzeng Wang, Qiannan Song, Kexin Li, Hong Chen","doi":"10.1080/15384101.2025.2566293","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to investigate the expression pattern of astrocyte-derived STC1 in TLE and elucidate the molecular mechanisms by which STC1 regulates neuroinflammation and seizures through the NF-κB signaling pathway.</p><p><strong>Methods: </strong>A TLE model was established by intrahippocampal injection of kainic acid (KA) in mice. STC1 expression levels and cellular localization in the hippocampus of TLE mice were examined. Adeno-associated virus-mediated gene overexpression and shRNA knockdown approaches were employed to investigate the effects of STC1 on neuroinflammatory responses, neuronal survival, and seizure activity. qRT-PCR and immunofluorescence methods were further utilized to evaluate inflammatory cytokine levels and NF-κB signaling pathway activity.</p><p><strong>Results: </strong>STC1 expression was upregulated in hippocampal tissues of TLE mice, with double immunofluorescence showing STC1 predominantly localized in GFAP-positive reactive astrocytes. STC1 overexpression significantly exacerbated KA-induced neuroinflammation, along with enhanced microglial activation. STC1 knockdown attenuated neuroinflammatory responses. Nissl staining and NeuN immunohistochemistry confirmed that STC1 aggravated KA-induced neuronal loss. STC1 overexpression promoted p65 phosphorylation and nuclear translocation, activating the NF-κB signaling pathway.</p><p><strong>Conclusion: </strong>This study reveals the molecular mechanism by which astrocyte-derived STC1 promotes TLE-associated neuroinflammation and neuronal injury through activation of the NF-κB signaling pathway, elucidating the crucial role of the astrocyte-STC1-NF-κB axis in epileptogenesis.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":" ","pages":"1-19"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Cycle","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15384101.2025.2566293","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This study aimed to investigate the expression pattern of astrocyte-derived STC1 in TLE and elucidate the molecular mechanisms by which STC1 regulates neuroinflammation and seizures through the NF-κB signaling pathway.

Methods: A TLE model was established by intrahippocampal injection of kainic acid (KA) in mice. STC1 expression levels and cellular localization in the hippocampus of TLE mice were examined. Adeno-associated virus-mediated gene overexpression and shRNA knockdown approaches were employed to investigate the effects of STC1 on neuroinflammatory responses, neuronal survival, and seizure activity. qRT-PCR and immunofluorescence methods were further utilized to evaluate inflammatory cytokine levels and NF-κB signaling pathway activity.

Results: STC1 expression was upregulated in hippocampal tissues of TLE mice, with double immunofluorescence showing STC1 predominantly localized in GFAP-positive reactive astrocytes. STC1 overexpression significantly exacerbated KA-induced neuroinflammation, along with enhanced microglial activation. STC1 knockdown attenuated neuroinflammatory responses. Nissl staining and NeuN immunohistochemistry confirmed that STC1 aggravated KA-induced neuronal loss. STC1 overexpression promoted p65 phosphorylation and nuclear translocation, activating the NF-κB signaling pathway.

Conclusion: This study reveals the molecular mechanism by which astrocyte-derived STC1 promotes TLE-associated neuroinflammation and neuronal injury through activation of the NF-κB signaling pathway, elucidating the crucial role of the astrocyte-STC1-NF-κB axis in epileptogenesis.

星形胶质细胞衍生的斯坦钙素-1通过NF-κ b依赖性神经炎症协调癫痫发生。
背景:本研究旨在探讨星形胶质细胞来源的STC1在TLE中的表达模式,阐明STC1通过NF-κB信号通路调控神经炎症和癫痫发作的分子机制。方法:采用海马体内注射kainic酸(KA)建立小鼠TLE模型。我们检测了STC1在TLE小鼠海马中的表达水平和细胞定位。采用腺相关病毒介导的基因过表达和shRNA敲低的方法来研究STC1对神经炎症反应、神经元存活和癫痫活动的影响。采用qRT-PCR和免疫荧光法检测各组炎症因子水平及NF-κB信号通路活性。结果:STC1在TLE小鼠海马组织中表达上调,双免疫荧光显示STC1主要定位于gmap阳性反应性星形胶质细胞。STC1过表达显著加重ka诱导的神经炎症,同时增强小胶质细胞激活。STC1敲除可减轻神经炎症反应。尼氏染色和NeuN免疫组化证实STC1加重了ka诱导的神经元损失。STC1过表达促进p65磷酸化和核易位,激活NF-κB信号通路。结论:本研究揭示了星形胶质细胞来源的STC1通过激活NF-κB信号通路促进tle相关神经炎症和神经元损伤的分子机制,阐明了星形胶质细胞-STC1-NF-κB轴在癫痫发生中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Cycle
Cell Cycle 生物-细胞生物学
CiteScore
7.70
自引率
2.30%
发文量
281
审稿时长
1 months
期刊介绍: Cell Cycle is a bi-weekly peer-reviewed journal of high priority research from all areas of cell biology. Cell Cycle covers all topics from yeast to man, from DNA to function, from development to aging, from stem cells to cell senescence, from metabolism to cell death, from cancer to neurobiology, from molecular biology to therapeutics. Our goal is fast publication of outstanding research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信