Prediction of concrete strength using multilayer perceptron neural network-based utilizing sustainable waste materials

Q2 Engineering
Laxmi Narayana Pasupuleti, Bhaskara Rao Nalli, Ajay Kumar Danikonda, Raghu Babu Uppara, Ramakrishna Mallidi
{"title":"Prediction of concrete strength using multilayer perceptron neural network-based utilizing sustainable waste materials","authors":"Laxmi Narayana Pasupuleti,&nbsp;Bhaskara Rao Nalli,&nbsp;Ajay Kumar Danikonda,&nbsp;Raghu Babu Uppara,&nbsp;Ramakrishna Mallidi","doi":"10.1007/s42107-025-01456-y","DOIUrl":null,"url":null,"abstract":"<div><p>This research reports a laboratory study on the optimal levels of vitrified Polish waste (VPW) and ground granulated blast furnace slag (GGBS) as partial substitutes for cement to examine the strength properties of concrete. Ordinary Portland cement was partially substituted with 5%, 10%, 15%, and 20% mixtures of vitrified polish waste and ground granulated blast-furnace slag (GGBFS). The water-to-cementitious materials ratio was consistently set at 0.38 for all mixtures. The concrete’s strength qualities were assessed using compressive testing, strength testing, splitting tensile strength testing, and flexural strength testing. The compression strength test was executed at 7 and 28 days of curing, while the split tensile strength and flexural strength tests were conducted on M30, M35, and M40 grade concrete. The mix proportions for M30, M35, and M40 are 1:1.615:3.427, 1:1.50:3.25, and 1:1.40:3.15, respectively. The test findings demonstrated that the compressive strength, split tensile strength, and flexural strength of concrete mixtures incorporating GGBFS and VPW enhance with the increasing proportions of GGBS and VPW. A multilayer perceptron (MLP) neural network was used to evaluate concrete strength, and the predicted results were very similar to the actual measurements. The findings demonstrate that an optimal level of 15% GGBFS and VPW relative to the total binder content yields no further enhancement in compressive strength, split tensile strength, or flexural strength with additional GGBFS and VPW.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"26 11","pages":"4797 - 4810"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-025-01456-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This research reports a laboratory study on the optimal levels of vitrified Polish waste (VPW) and ground granulated blast furnace slag (GGBS) as partial substitutes for cement to examine the strength properties of concrete. Ordinary Portland cement was partially substituted with 5%, 10%, 15%, and 20% mixtures of vitrified polish waste and ground granulated blast-furnace slag (GGBFS). The water-to-cementitious materials ratio was consistently set at 0.38 for all mixtures. The concrete’s strength qualities were assessed using compressive testing, strength testing, splitting tensile strength testing, and flexural strength testing. The compression strength test was executed at 7 and 28 days of curing, while the split tensile strength and flexural strength tests were conducted on M30, M35, and M40 grade concrete. The mix proportions for M30, M35, and M40 are 1:1.615:3.427, 1:1.50:3.25, and 1:1.40:3.15, respectively. The test findings demonstrated that the compressive strength, split tensile strength, and flexural strength of concrete mixtures incorporating GGBFS and VPW enhance with the increasing proportions of GGBS and VPW. A multilayer perceptron (MLP) neural network was used to evaluate concrete strength, and the predicted results were very similar to the actual measurements. The findings demonstrate that an optimal level of 15% GGBFS and VPW relative to the total binder content yields no further enhancement in compressive strength, split tensile strength, or flexural strength with additional GGBFS and VPW.

Abstract Image

基于多层感知器神经网络的混凝土强度预测
本研究报告了一项关于玻璃化波兰废物(VPW)和磨粒高炉渣(GGBS)作为水泥部分替代品的最佳水平的实验室研究,以检查混凝土的强度特性。普通硅酸盐水泥部分用5%、10%、15%和20%的玻璃化抛光废料和磨碎的颗粒状高炉渣(GGBFS)混合物代替。所有混合物的水胶比均设定为0.38。通过抗压试验、强度试验、劈裂抗拉强度试验和抗弯强度试验对混凝土的强度质量进行了评价。分别在养护第7、28天进行抗压强度试验,M30、M35、M40级混凝土进行劈裂抗拉强度和抗弯强度试验。M30、M35、M40的混合比例分别为1:1.615:3.427、1:1.50:3.25、1:1.40:3.15。试验结果表明,随着GGBS和VPW掺量的增加,掺入GGBS和VPW的混凝土的抗压强度、劈裂抗拉强度和抗弯强度均有所提高。采用多层感知器(MLP)神经网络对混凝土强度进行评价,预测结果与实测结果非常接近。研究结果表明,当GGBFS和VPW相对于总粘结剂含量的最佳水平为15%时,添加GGBFS和VPW不会进一步提高抗压强度、劈裂抗拉强度或抗弯强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asian Journal of Civil Engineering
Asian Journal of Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
2.70
自引率
0.00%
发文量
121
期刊介绍: The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt.  Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate:  a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信