Denise-Penelope N. Kontoni, Mehran Akhavan Salmassi
{"title":"Effect of end shear walls on seismic pounding between two adjacent reinforced concrete high-rise buildings","authors":"Denise-Penelope N. Kontoni, Mehran Akhavan Salmassi","doi":"10.1007/s42107-025-01448-y","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, architectural requirements affect structural design investigations. On the other hand, the pounding effect is one of the crucial effects between two adjacent high-rise buildings under seismic load. Because shear walls experience higher stresses at their ends, end shear walls alleviate these stresses and enhance the effect of shear walls in high-rise buildings. This study aimed to evaluate the impact of end shear walls on the seismic pounding between two adjacent 20-story reinforced concrete buildings subjected to seven far-field seismic records by nonlinear time history analysis. Also, the distance between the two buildings is considered zero. The inclusion of end shear walls was found to significantly reduce seismic pounding effects. Specifically, notable reductions were observed in average pounding displacements and rotational accelerations in the horizontal (X) direction. Average pounding drifts in the X-direction decreased by up to 26%, while average pounding accelerations in the X-direction were reduced by up to 9%. Similarly, pounding accelerations in the vertical (Z) direction and vertical pounding rotations were also substantially reduced. These findings highlight the effectiveness of end shear walls in mitigating seismic pounding and improving the overall seismic performance of adjacent reinforced concrete high-rise buildings subjected to far-fault ground motions.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"26 11","pages":"4649 - 4664"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42107-025-01448-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-025-01448-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, architectural requirements affect structural design investigations. On the other hand, the pounding effect is one of the crucial effects between two adjacent high-rise buildings under seismic load. Because shear walls experience higher stresses at their ends, end shear walls alleviate these stresses and enhance the effect of shear walls in high-rise buildings. This study aimed to evaluate the impact of end shear walls on the seismic pounding between two adjacent 20-story reinforced concrete buildings subjected to seven far-field seismic records by nonlinear time history analysis. Also, the distance between the two buildings is considered zero. The inclusion of end shear walls was found to significantly reduce seismic pounding effects. Specifically, notable reductions were observed in average pounding displacements and rotational accelerations in the horizontal (X) direction. Average pounding drifts in the X-direction decreased by up to 26%, while average pounding accelerations in the X-direction were reduced by up to 9%. Similarly, pounding accelerations in the vertical (Z) direction and vertical pounding rotations were also substantially reduced. These findings highlight the effectiveness of end shear walls in mitigating seismic pounding and improving the overall seismic performance of adjacent reinforced concrete high-rise buildings subjected to far-fault ground motions.
期刊介绍:
The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt. Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate: a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.