{"title":"Cost-effective and performance-optimized reinforced concrete retaining walls through differential evolution algorithm","authors":"C. R. Suribabu, G. Murali","doi":"10.1007/s42107-025-01451-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the optimal design of counterfort retaining walls through the application of a Differential Evolution (DE) algorithm. A typical counterfort retaining wall comprises four fundamental components: stem, toe, heel, and counterfort. By treating the dimensions of these elements and the associated reinforcements as design variables, the optimal design process identifies the most cost-effective dimensions while adhering to the various constraints. The DE algorithm, a population-based optimization technique similar to Genetic Algorithms, distinguishes itself through its unique methodologies for crossover, mutation, and population updating. The construction cost of a retaining wall primarily encompasses the expenses for concrete, reinforcement steel, and formwork. In this study, the wall geometry was optimized using the DE algorithm, with the optimization framework implemented in MATLAB software. The computed results were compared with the recommended values for different wall heights. To ascertain the optimal combination of feasible design variables, objective functions were employed, contingent on the design variable values. This investigation utilized 12 design variables and 12 design constraints to optimize the objective function. Counterforts are incorporated to enhance the stability of the main wall, with a minimum thickness defined to ensure compliance with the specified lower limit values. Furthermore, the objective function was formulated for wall heights of 6, 7, 8, 9, and 10 m above ground level using the DE algorithm. The results demonstrate that the optimization of counterfort retaining walls can significantly reduce construction costs.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"26 11","pages":"4707 - 4718"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-025-01451-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the optimal design of counterfort retaining walls through the application of a Differential Evolution (DE) algorithm. A typical counterfort retaining wall comprises four fundamental components: stem, toe, heel, and counterfort. By treating the dimensions of these elements and the associated reinforcements as design variables, the optimal design process identifies the most cost-effective dimensions while adhering to the various constraints. The DE algorithm, a population-based optimization technique similar to Genetic Algorithms, distinguishes itself through its unique methodologies for crossover, mutation, and population updating. The construction cost of a retaining wall primarily encompasses the expenses for concrete, reinforcement steel, and formwork. In this study, the wall geometry was optimized using the DE algorithm, with the optimization framework implemented in MATLAB software. The computed results were compared with the recommended values for different wall heights. To ascertain the optimal combination of feasible design variables, objective functions were employed, contingent on the design variable values. This investigation utilized 12 design variables and 12 design constraints to optimize the objective function. Counterforts are incorporated to enhance the stability of the main wall, with a minimum thickness defined to ensure compliance with the specified lower limit values. Furthermore, the objective function was formulated for wall heights of 6, 7, 8, 9, and 10 m above ground level using the DE algorithm. The results demonstrate that the optimization of counterfort retaining walls can significantly reduce construction costs.
期刊介绍:
The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt. Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate: a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.