Fabrication of a highly stable Ni–Co bimetallic catalyst for the steam reforming of methane via in situ crystallization of phyllosilicate on porous spherical silica

IF 4.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Ryunosuke Nakamura, Hikari Minamisawa and Tomohiko Okada
{"title":"Fabrication of a highly stable Ni–Co bimetallic catalyst for the steam reforming of methane via in situ crystallization of phyllosilicate on porous spherical silica","authors":"Ryunosuke Nakamura, Hikari Minamisawa and Tomohiko Okada","doi":"10.1039/D5CY00770D","DOIUrl":null,"url":null,"abstract":"<p >Although Ni nanoparticles are useful as catalytically active species in diverse reactions, their agglomeration restricts their long-term activity. Therefore, improving the thermal stability of Ni nanoparticles on a support is essential for enhancing their activity in processes such as the reforming of hydrocarbons. Herein, we present a synthetic strategy for thermally stable Ni–Co bimetallic nanoparticles supported on porous spherical silica, which is based on the <em>in situ</em> crystallization of a 2 : 1-type phyllosilicate. The synthesis process consisted of the reaction of silica powder with Ni(NO<small><sub>3</sub></small>)<small><sub>2</sub></small> and Co(NO<small><sub>3</sub></small>)<small><sub>2</sub></small> in an aqueous urea solution at 150 °C on the surface of porous silica microspheres, followed by treating the resulting 2 : 1-type phyllosilicate at 800 °C in a H<small><sub>2</sub></small> flow to obtain Ni–Co bimetallic nanoparticles and CoSiO<small><sub>4</sub></small> supported on micrometer-sized spherical silica. The preservation of the spherical morphology enabled the steam reforming of methane without requiring molding/pelletizing of the powdered microspheres. The as-synthesized Ni–Co bimetallic nanoparticles exhibited higher catalytic activity than those prepared using a conventional impregnation method because the anchoring effect of Co<small><sup>2+</sup></small> in CoSiO<small><sub>4</sub></small> prevented nanoparticle agglomeration, thereby improving the catalytic activity. The proposed synthetic strategy using particulate porous silica is feasible for the fabrication of highly functionalized metal nanoparticle-based catalysts resistant to sintering and degradation.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 19","pages":" 5857-5863"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cy/d5cy00770d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Although Ni nanoparticles are useful as catalytically active species in diverse reactions, their agglomeration restricts their long-term activity. Therefore, improving the thermal stability of Ni nanoparticles on a support is essential for enhancing their activity in processes such as the reforming of hydrocarbons. Herein, we present a synthetic strategy for thermally stable Ni–Co bimetallic nanoparticles supported on porous spherical silica, which is based on the in situ crystallization of a 2 : 1-type phyllosilicate. The synthesis process consisted of the reaction of silica powder with Ni(NO3)2 and Co(NO3)2 in an aqueous urea solution at 150 °C on the surface of porous silica microspheres, followed by treating the resulting 2 : 1-type phyllosilicate at 800 °C in a H2 flow to obtain Ni–Co bimetallic nanoparticles and CoSiO4 supported on micrometer-sized spherical silica. The preservation of the spherical morphology enabled the steam reforming of methane without requiring molding/pelletizing of the powdered microspheres. The as-synthesized Ni–Co bimetallic nanoparticles exhibited higher catalytic activity than those prepared using a conventional impregnation method because the anchoring effect of Co2+ in CoSiO4 prevented nanoparticle agglomeration, thereby improving the catalytic activity. The proposed synthetic strategy using particulate porous silica is feasible for the fabrication of highly functionalized metal nanoparticle-based catalysts resistant to sintering and degradation.

Abstract Image

利用层状硅酸盐在多孔球形二氧化硅上原位结晶制备一种用于甲烷蒸汽重整的高稳定性Ni-Co双金属催化剂
虽然镍纳米颗粒在多种反应中作为催化活性物质是有用的,但它们的团聚限制了它们的长期活性。因此,提高Ni纳米颗粒在载体上的热稳定性对于提高其在碳氢化合物重整等过程中的活性至关重要。在此,我们提出了一种基于2:1型层状硅酸盐原位结晶的多孔球形二氧化硅负载的热稳定Ni-Co双金属纳米颗粒的合成策略。在150℃的尿素水溶液中,二氧化硅粉与Ni(NO3)2和Co(NO3)2在多孔二氧化硅微球表面反应,然后在800℃的H2流中处理得到2:1型叶状硅酸盐,得到Ni - Co双金属纳米颗粒和微米级球形二氧化硅负载的CoSiO4。球形形态的保存使甲烷的蒸汽重整不需要粉末微球的成型/球团化。由于CoSiO4中Co2+的锚定作用阻止了纳米颗粒团聚,从而提高了催化活性,因此合成的Ni-Co双金属纳米颗粒比传统浸渍法制备的Ni-Co双金属纳米颗粒具有更高的催化活性。采用颗粒多孔二氧化硅制备高功能化金属纳米颗粒基催化剂是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信