Urea-assisted hydrogen production: insights into Ni(Co, Mn) LDH-based multifunctional electrocatalysts

IF 4.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Subramanian Rajalekshmi, Kodiyarasu Sooriya, Suresh Varsha and Alagarsamy Pandikumar
{"title":"Urea-assisted hydrogen production: insights into Ni(Co, Mn) LDH-based multifunctional electrocatalysts","authors":"Subramanian Rajalekshmi, Kodiyarasu Sooriya, Suresh Varsha and Alagarsamy Pandikumar","doi":"10.1039/D5CY00668F","DOIUrl":null,"url":null,"abstract":"<p >The pursuit of sustainable energy technologies has sparked significant interest in multifunctional, transition metal-based nanostructured electrocatalysts for efficient energy conversion. A promising pathway toward energy sustainability involves hydrogen production through hybrid water electrolysis. By tackling the slow kinetics of the oxygen evolution reaction (OER), integrating urea electrolysis significantly lowers the cell voltage, offering a promising energy-saving route to hydrogen production. In this work, Ni-based layered double hydroxide (LDH) nanostructures exhibit remarkable stability in alkaline media, positioning them as versatile electrocatalysts for the urea oxidation reaction (UOR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Using a facile one-pot co-precipitation method, NiCo-LDH and NiMn-LDH nanostructures are synthesized. Interestingly, for the HER and UOR, these nanostructures show relatively small overpotentials of 360 and 90 mV at 50 mA cm<small><sup>−2</sup></small>, respectively. Furthermore, NiCo-LDH/NF electrodes are used as the anode and cathode in hybrid water electrolysis, which is accomplished at a lower cell voltage of 1.66 V at 10 mA cm<small><sup>−2</sup></small>. The numerous active sites in the LDH nanostructures and the extremely conductive nickel foam substrate work in sync to produce this exceptional electrocatalytic performance. Overall, this work suggests a robust idea for implementing efficient, durable, and multifunctional electrocatalysts that enhance the HER, OER, and UOR, contributing to next-generation hydrogen production technologies.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 19","pages":" 5753-5764"},"PeriodicalIF":4.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cy/d5cy00668f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The pursuit of sustainable energy technologies has sparked significant interest in multifunctional, transition metal-based nanostructured electrocatalysts for efficient energy conversion. A promising pathway toward energy sustainability involves hydrogen production through hybrid water electrolysis. By tackling the slow kinetics of the oxygen evolution reaction (OER), integrating urea electrolysis significantly lowers the cell voltage, offering a promising energy-saving route to hydrogen production. In this work, Ni-based layered double hydroxide (LDH) nanostructures exhibit remarkable stability in alkaline media, positioning them as versatile electrocatalysts for the urea oxidation reaction (UOR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Using a facile one-pot co-precipitation method, NiCo-LDH and NiMn-LDH nanostructures are synthesized. Interestingly, for the HER and UOR, these nanostructures show relatively small overpotentials of 360 and 90 mV at 50 mA cm−2, respectively. Furthermore, NiCo-LDH/NF electrodes are used as the anode and cathode in hybrid water electrolysis, which is accomplished at a lower cell voltage of 1.66 V at 10 mA cm−2. The numerous active sites in the LDH nanostructures and the extremely conductive nickel foam substrate work in sync to produce this exceptional electrocatalytic performance. Overall, this work suggests a robust idea for implementing efficient, durable, and multifunctional electrocatalysts that enhance the HER, OER, and UOR, contributing to next-generation hydrogen production technologies.

Abstract Image

尿素辅助制氢:Ni(Co, Mn) ldh基多功能电催化剂的研究
对可持续能源技术的追求引起了人们对多功能、过渡金属基纳米结构电催化剂的极大兴趣,这些电催化剂用于有效的能量转换。实现能源可持续性的一个有希望的途径是通过混合水电解制氢。通过解决析氧反应(OER)的缓慢动力学,整合尿素电解显着降低了电池电压,为制氢提供了一条有前途的节能途径。在这项工作中,镍基层状双氢氧化物(LDH)纳米结构在碱性介质中表现出显著的稳定性,使其成为尿素氧化反应(UOR)、析氧反应(OER)和析氢反应(HER)的多功能电催化剂。采用简便的一锅共沉淀法,合成了NiCo-LDH和NiMn-LDH纳米结构。有趣的是,对于HER和UOR,这些纳米结构在50 mA cm - 2下分别表现出360和90 mV的过电位。此外,NiCo-LDH/NF电极在10 mA cm - 2下的低电池电压1.66 V下作为混合电解的阳极和阴极。LDH纳米结构中的众多活性位点和极导电的泡沫镍衬底同步工作,产生了这种特殊的电催化性能。总的来说,这项工作为实现高效、耐用和多功能的电催化剂提供了一个强有力的想法,这些电催化剂可以提高HER、OER和UOR,为下一代制氢技术做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信