Hexiang Peng;Kai Liao;Jianwei Yang;Bo Pang;Zhengyou He
{"title":"Deep Reinforcement Learning Based Multi-Timescale Volt/Var Control in Distribution Networks Considering Network Reconfiguration","authors":"Hexiang Peng;Kai Liao;Jianwei Yang;Bo Pang;Zhengyou He","doi":"10.1109/TSTE.2025.3574806","DOIUrl":null,"url":null,"abstract":"Coordinating Volt/Var control (VVC) across multiple timescales in distribution networks is challenging due to the diverse response characteristics of control devices. This paper proposes a novel bi-level data-driven multi-timescale VVC method to achieve coordinated control. The method integrates short-timescale control of continuous devices, such as photovoltaics, with longer-timescale control of discrete devices, including capacitor banks, and network reconfiguration. The VVC problem is formulated as a bi-level partially observable Markov decision process (POMDP). Inner-level control employs the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm for continuous devices, while outer-level control uses the Deep Double Q-Network (DDQN) algorithm for discrete devices and network reconfiguration. Collaborative training is achieved by aligning reward signals and providing inner-level agent actions as state information to outer-level agents. To mitigate over-exploration caused by network reconfiguration, graph neural networks (GNNs) are utilized to identify representative topologies, simplifying the reconfiguration space. The proposed method is validated on the IEEE 33-bus and PG&E 69-bus systems, demonstrating superior VVC performance and enhanced robustness to topological variations.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 4","pages":"2948-2958"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11017695/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Coordinating Volt/Var control (VVC) across multiple timescales in distribution networks is challenging due to the diverse response characteristics of control devices. This paper proposes a novel bi-level data-driven multi-timescale VVC method to achieve coordinated control. The method integrates short-timescale control of continuous devices, such as photovoltaics, with longer-timescale control of discrete devices, including capacitor banks, and network reconfiguration. The VVC problem is formulated as a bi-level partially observable Markov decision process (POMDP). Inner-level control employs the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm for continuous devices, while outer-level control uses the Deep Double Q-Network (DDQN) algorithm for discrete devices and network reconfiguration. Collaborative training is achieved by aligning reward signals and providing inner-level agent actions as state information to outer-level agents. To mitigate over-exploration caused by network reconfiguration, graph neural networks (GNNs) are utilized to identify representative topologies, simplifying the reconfiguration space. The proposed method is validated on the IEEE 33-bus and PG&E 69-bus systems, demonstrating superior VVC performance and enhanced robustness to topological variations.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.