Skylar K. Osler, Audrey V. Conner, Molly E. McFadden, Maxwell J. Robb
{"title":"Strain-Dependent Multicolor Mechanochromism of 3H-Bis-Naphthopyran in Solid Polymeric Materials","authors":"Skylar K. Osler, Audrey V. Conner, Molly E. McFadden, Maxwell J. Robb","doi":"10.1039/d5sc05757d","DOIUrl":null,"url":null,"abstract":"Multimodal mechanophores are important targets for the design of complex stress-sensing materials due to their multicolor mechanochromic properties, which potentially enable discrete visual outputs under varying levels of stress and/or strain. We have developed a novel 3H-bis-naphthopyran mechanophore that imbues solid polymeric materials with force-dependent colorimetric sensing capabilities. Polydimethylsiloxane (PDMS) elastomers incorporating a 3H-bis-naphthopyran crosslinker were synthesized and deformed under uniaxial tension. The relative distribution of two distinctly colored merocyanine dyes is systematically biased under varying levels of applied stress and/or strain, resulting in the appearance of distinct coloration, which is characterized by pronounced changes in visible absorption spectra. This work demonstrates that judiciously designed bis-naphthopyran mechanophores can function as force sensors that visually report on the magnitude of applied force in elastomeric materials.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"4 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc05757d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multimodal mechanophores are important targets for the design of complex stress-sensing materials due to their multicolor mechanochromic properties, which potentially enable discrete visual outputs under varying levels of stress and/or strain. We have developed a novel 3H-bis-naphthopyran mechanophore that imbues solid polymeric materials with force-dependent colorimetric sensing capabilities. Polydimethylsiloxane (PDMS) elastomers incorporating a 3H-bis-naphthopyran crosslinker were synthesized and deformed under uniaxial tension. The relative distribution of two distinctly colored merocyanine dyes is systematically biased under varying levels of applied stress and/or strain, resulting in the appearance of distinct coloration, which is characterized by pronounced changes in visible absorption spectra. This work demonstrates that judiciously designed bis-naphthopyran mechanophores can function as force sensors that visually report on the magnitude of applied force in elastomeric materials.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.