Influence of Radial Deformation and Gate Oxide Layer on Electrical Transport in Carbon Nanotube Field-Effect Transistors

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Xiao-Yan Hu, , , Kun-Zi Han, , , Shuai Liu, , , De-Huan Meng, , , Hui-Jin Li, , , Wei-Ping Wang, , , Yu-Hang Zhao, , , Tao Chu*, , , Yang Yang*, , and , Dong-Bo Zhang*, 
{"title":"Influence of Radial Deformation and Gate Oxide Layer on Electrical Transport in Carbon Nanotube Field-Effect Transistors","authors":"Xiao-Yan Hu,&nbsp;, ,&nbsp;Kun-Zi Han,&nbsp;, ,&nbsp;Shuai Liu,&nbsp;, ,&nbsp;De-Huan Meng,&nbsp;, ,&nbsp;Hui-Jin Li,&nbsp;, ,&nbsp;Wei-Ping Wang,&nbsp;, ,&nbsp;Yu-Hang Zhao,&nbsp;, ,&nbsp;Tao Chu*,&nbsp;, ,&nbsp;Yang Yang*,&nbsp;, and ,&nbsp;Dong-Bo Zhang*,&nbsp;","doi":"10.1021/acs.jpcc.5c02720","DOIUrl":null,"url":null,"abstract":"<p >Carbon nanotube field-effect transistors (CNTFETs) have emerged as a promising alternative to silicon-based devices for next-generation integrated circuits. Using the lattice nonequilibrium Green’s function method, we conduct multiscale modeling of CNTFETs to investigate how radial deformation and gate oxide layer properties influence interface conductance and device performance. Our simulations demonstrate that radial compression of carbon nanotubes (CNTs) enhances current flow at the CNT/gate oxide interface but reduces the transistor’s switching current ratio. Conversely, a thin gate oxide layer with high dielectric constant significantly improves the switching current ratio. These findings provide insights for optimizing the electrical characteristics and switching behavior of CNTFETs through structural engineering.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 40","pages":"18164–18171"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c02720","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon nanotube field-effect transistors (CNTFETs) have emerged as a promising alternative to silicon-based devices for next-generation integrated circuits. Using the lattice nonequilibrium Green’s function method, we conduct multiscale modeling of CNTFETs to investigate how radial deformation and gate oxide layer properties influence interface conductance and device performance. Our simulations demonstrate that radial compression of carbon nanotubes (CNTs) enhances current flow at the CNT/gate oxide interface but reduces the transistor’s switching current ratio. Conversely, a thin gate oxide layer with high dielectric constant significantly improves the switching current ratio. These findings provide insights for optimizing the electrical characteristics and switching behavior of CNTFETs through structural engineering.

Abstract Image

Abstract Image

径向变形和栅极氧化层对碳纳米管场效应晶体管电输运的影响
碳纳米管场效应晶体管(cntfet)已成为下一代集成电路中硅基器件的有前途的替代品。利用晶格非平衡格林函数方法,我们对cntfet进行了多尺度建模,以研究径向变形和栅极氧化层性质如何影响界面电导和器件性能。我们的模拟表明,碳纳米管(CNTs)的径向压缩增强了碳纳米管/栅极氧化物界面的电流流动,但降低了晶体管的开关电流比。相反,具有高介电常数的薄栅氧化层可显著提高开关电流比。这些发现为通过结构工程优化cntfet的电气特性和开关行为提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信