Photochemical modeling of Ar+ ions in the Martian dayside ionosphere: Implications for ionospheric modeling on Mars

IF 5.8 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Long Cheng, Erik Vigren, Robert Lillis, Moa Persson
{"title":"Photochemical modeling of Ar+ ions in the Martian dayside ionosphere: Implications for ionospheric modeling on Mars","authors":"Long Cheng, Erik Vigren, Robert Lillis, Moa Persson","doi":"10.1051/0004-6361/202555806","DOIUrl":null,"url":null,"abstract":"The Martian dayside ionosphere has been widely modeled using photochemical equilibrium calculations. These efforts have mostly focused on dominant ion species in order to make comparisons with orbital observations and on displaying non-negligible model-observation discrepancies. In this study, we investigate Ar<sup>+<sup/>ions in the Martian dayside ionosphere, an ion species with a relatively simple chemistry, and perform both case-by-case orbital comparisons and a statistical comparison over five years of observations by the Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Mars Atmosphere and Volatile Evolution (MAVEN) mission. Statistically, the ratio of modeled to observed Ar<sup>+<sup/>densities increases from ∼1 near 130 km to ∼4 at 220 km, with notable variations as a function of the solar zenith angle. Pressure-dependent discrepancies show a weaker correlation with the solar zenith angle. Model performance improves when incorporating (i) a higher reaction rate coefficient for the charge transfer between Ar<sup>+<sup/>and CO<sub>2<sub/> and/or (ii) reduced solar irradiance. At altitudes above 200 km, Ar<sup>+<sup/>loss via reactions with H<sub>2<sub/> becomes increasingly important. However, we find that model-observation agreement varies between orbits: Some show strong consistency, particularly during Deep Dip campaigns, while others exhibit systematic deviations or significant discrepancies. We suggest that while systematic adjustments to reaction rate coefficients, ionization cross sections, solar irradiance, or background neutral densities may improve model fidelity for certain orbits, capturing the dynamic and time-varying nature of the Martian ionosphere requires further comprehensive investigations.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"3 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202555806","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Martian dayside ionosphere has been widely modeled using photochemical equilibrium calculations. These efforts have mostly focused on dominant ion species in order to make comparisons with orbital observations and on displaying non-negligible model-observation discrepancies. In this study, we investigate Ar+ions in the Martian dayside ionosphere, an ion species with a relatively simple chemistry, and perform both case-by-case orbital comparisons and a statistical comparison over five years of observations by the Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Mars Atmosphere and Volatile Evolution (MAVEN) mission. Statistically, the ratio of modeled to observed Ar+densities increases from ∼1 near 130 km to ∼4 at 220 km, with notable variations as a function of the solar zenith angle. Pressure-dependent discrepancies show a weaker correlation with the solar zenith angle. Model performance improves when incorporating (i) a higher reaction rate coefficient for the charge transfer between Ar+and CO2 and/or (ii) reduced solar irradiance. At altitudes above 200 km, Ar+loss via reactions with H2 becomes increasingly important. However, we find that model-observation agreement varies between orbits: Some show strong consistency, particularly during Deep Dip campaigns, while others exhibit systematic deviations or significant discrepancies. We suggest that while systematic adjustments to reaction rate coefficients, ionization cross sections, solar irradiance, or background neutral densities may improve model fidelity for certain orbits, capturing the dynamic and time-varying nature of the Martian ionosphere requires further comprehensive investigations.
火星日面电离层中Ar+离子的光化学模拟:对火星电离层模拟的启示
利用光化学平衡计算,火星白天的电离层已经被广泛地建模。这些努力主要集中在优势离子种类上,以便与轨道观测进行比较,并显示不可忽略的模型观测差异。在这项研究中,我们研究了火星日侧电离层中的Ar+离子,这是一种化学性质相对简单的离子,并在火星大气和挥发性演化(MAVEN)任务的中性气体和离子质谱仪(NGIMS)的5年观测中进行了个案轨道比较和统计比较。统计上,模拟的Ar+密度与观测到的Ar+密度之比从130 km附近的~ 1增加到220 km处的~ 4,作为太阳天顶角的函数有显著的变化。与压力相关的差异与太阳天顶角的相关性较弱。当考虑到(i)更高的Ar+和CO2之间电荷转移的反应速率系数和/或(ii)降低的太阳辐照度时,模型性能得到改善。在海拔200公里以上的地方,通过与H2反应而损失的Ar+变得越来越重要。然而,我们发现模型观测的一致性在不同的轨道之间有所不同:有些轨道表现出很强的一致性,特别是在深探运动期间,而另一些则表现出系统性的偏差或显著的差异。我们建议,虽然系统地调整反应速率系数、电离截面、太阳辐照度或背景中性密度可能会提高某些轨道的模型保真度,但捕获火星电离层的动态和时变性质需要进一步的全面研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信