QSAR‐Based Machine Learning Reveals a Repurposed Dual‐Function G4 Ligand against Ensitrelvir‐Resistant SARS‐CoV‐2 Main Protease

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Napat Prompat, Panik Nadee, Aekkaraj Nualla‐ong
{"title":"QSAR‐Based Machine Learning Reveals a Repurposed Dual‐Function G4 Ligand against Ensitrelvir‐Resistant SARS‐CoV‐2 Main Protease","authors":"Napat Prompat, Panik Nadee, Aekkaraj Nualla‐ong","doi":"10.1002/adts.202501079","DOIUrl":null,"url":null,"abstract":"The emergence of drug‐resistant SARS‐CoV‐2 variants necessitates novel antiviral strategies targeting conserved viral components. This study integrates machine learning‐based quantitative structure‐activity relationship modeling and comprehensive computational approaches to identify dual‐function inhibitors against the main protease and RNA G‐quadruplex structures of SARS‐CoV‐2. A Random Forest classifier trained on 890 curated compounds achieves superior predictive performance (AUC = 0.9458) using CDK fingerprints, enabling virtual screening of 4,564 G‐quadruplex ligands from the G4LDB. Molecular docking reveals lead compound G4L2574 exhibits stronger binding affinity (−12.11 kcal mol<jats:sup>−1</jats:sup>) to the M49I mutant Mpro than clinical inhibitor ensitrelvir (−8.92 kcal mol<jats:sup>−1</jats:sup>), with molecular dynamics simulations demonstrating enhanced complex stability and persistent hydrogen bonding. MM/PBSA calculations confirm favorable binding free energy (−40.54 kcal mol<jats:sup>−1</jats:sup>) for G4L2574‐M49I, driven by robust electrostatic interactions. Structural analysis shows the M49I mutation induced steric hindrance compromising ensitrelvir binding, while G4L2574 maintained critical interactions with catalytic residues His41 and Cys145. Additionally, G4L2574 demonstrates superior RNA G‐quadruplex binding (−11.73 kcal mol<jats:sup>−1</jats:sup>) than RNA G‐quadruplex stabilizing ligand TMPyP4. This dual‐targeting mechanism, validated through machine learning and MD simulations, presents a promising strategy to circumvent resistance mutations while leveraging conserved viral replication targets. The integrated computational pipeline establishes a framework for rapid identification of broad‐spectrum antivirals against evolving coronaviruses.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"96 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202501079","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of drug‐resistant SARS‐CoV‐2 variants necessitates novel antiviral strategies targeting conserved viral components. This study integrates machine learning‐based quantitative structure‐activity relationship modeling and comprehensive computational approaches to identify dual‐function inhibitors against the main protease and RNA G‐quadruplex structures of SARS‐CoV‐2. A Random Forest classifier trained on 890 curated compounds achieves superior predictive performance (AUC = 0.9458) using CDK fingerprints, enabling virtual screening of 4,564 G‐quadruplex ligands from the G4LDB. Molecular docking reveals lead compound G4L2574 exhibits stronger binding affinity (−12.11 kcal mol−1) to the M49I mutant Mpro than clinical inhibitor ensitrelvir (−8.92 kcal mol−1), with molecular dynamics simulations demonstrating enhanced complex stability and persistent hydrogen bonding. MM/PBSA calculations confirm favorable binding free energy (−40.54 kcal mol−1) for G4L2574‐M49I, driven by robust electrostatic interactions. Structural analysis shows the M49I mutation induced steric hindrance compromising ensitrelvir binding, while G4L2574 maintained critical interactions with catalytic residues His41 and Cys145. Additionally, G4L2574 demonstrates superior RNA G‐quadruplex binding (−11.73 kcal mol−1) than RNA G‐quadruplex stabilizing ligand TMPyP4. This dual‐targeting mechanism, validated through machine learning and MD simulations, presents a promising strategy to circumvent resistance mutations while leveraging conserved viral replication targets. The integrated computational pipeline establishes a framework for rapid identification of broad‐spectrum antivirals against evolving coronaviruses.
基于QSAR的机器学习揭示了一种针对Ensitrelvir - Resistant SARS - CoV - 2主蛋白酶的双重功能G4配体
耐药SARS - CoV - 2变体的出现需要针对保守病毒成分的新型抗病毒策略。本研究整合了基于机器学习的定量结构-活性关系建模和综合计算方法,以确定针对SARS - CoV - 2主要蛋白酶和RNA G -四重结构的双功能抑制剂。随机森林分类器使用CDK指纹对890种筛选化合物进行了训练,获得了卓越的预测性能(AUC = 0.9458),能够从G4LDB中虚拟筛选4,564个G‐四联体配体。分子对接显示,先导化合物G4L2574对M49I突变体Mpro的结合亲和力(- 12.11 kcal mol−1)比临床抑制剂ensitrelvir (- 8.92 kcal mol−1)更强,分子动力学模拟显示复合物稳定性和持久的氢键。MM/PBSA计算证实G4L2574‐M49I在强大的静电相互作用驱动下具有良好的结合自由能(- 40.54 kcal mol - 1)。结构分析表明,M49I突变诱导的空间位阻影响了ensitrelvir的结合,而G4L2574与催化残基His41和Cys145保持了关键的相互作用。此外,G4L2574表现出比RNA G‐四重体稳定配体TMPyP4更好的RNA G‐四重体结合(- 11.73 kcal mol−1)。通过机器学习和MD模拟验证了这种双重靶向机制,提出了一种有前途的策略,可以在利用保守的病毒复制靶标的同时规避抗性突变。综合计算管道建立了一个框架,用于快速识别针对不断进化的冠状病毒的广谱抗病毒药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信