{"title":"Redox biology at the intersection of physical activity and air pollution: Mechanisms, consequences, and complexity","authors":"Valentina Jeria-Espinoza , Carlos Henriquez-Olguin , Edgardo Opazo-Diaz , Timoteo Marchini","doi":"10.1016/j.freeradbiomed.2025.09.047","DOIUrl":null,"url":null,"abstract":"<div><div>Air pollution and physical inactivity are leading contributors to the global burden of chronic disease and premature mortality. While exercise is a well-established stimulus for physiological adaptations and disease prevention, it also transiently increases reactive oxygen species (ROS) production, which function as essential signals for metabolic remodeling and cellular resilience. In contrast, exposure to air pollution, specifically fine particulate matter (PM<sub>2.5</sub>), leads to sustained and uncontrolled ROS production, promoting oxidative damage, inflammation, and cardiometabolic dysfunction.</div><div>This review examines a critical and under-investigated question: How does exercising in polluted environments affect the redox signaling pathways that mediate the health benefits of exercise? We summarize current knowledge at the intersection of exercise physiology, redox biology, and environmental toxicology, with a particular focus on the roles of ROS sources, the scavenger system, and downstream physiological responses. By integrating findings from human and animal studies, we identify factors such as air pollution sources and level of exposure, exercise intensity, and age that shape redox outcomes. We also identify key knowledge gaps to clarify how context-specific redox responses determine whether exercise promotes adaptation or exacerbates pollution-related harm, providing essential insights for future mechanistic research and evidence-based public policies.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"241 ","pages":"Pages 488-497"},"PeriodicalIF":8.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584925010044","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Air pollution and physical inactivity are leading contributors to the global burden of chronic disease and premature mortality. While exercise is a well-established stimulus for physiological adaptations and disease prevention, it also transiently increases reactive oxygen species (ROS) production, which function as essential signals for metabolic remodeling and cellular resilience. In contrast, exposure to air pollution, specifically fine particulate matter (PM2.5), leads to sustained and uncontrolled ROS production, promoting oxidative damage, inflammation, and cardiometabolic dysfunction.
This review examines a critical and under-investigated question: How does exercising in polluted environments affect the redox signaling pathways that mediate the health benefits of exercise? We summarize current knowledge at the intersection of exercise physiology, redox biology, and environmental toxicology, with a particular focus on the roles of ROS sources, the scavenger system, and downstream physiological responses. By integrating findings from human and animal studies, we identify factors such as air pollution sources and level of exposure, exercise intensity, and age that shape redox outcomes. We also identify key knowledge gaps to clarify how context-specific redox responses determine whether exercise promotes adaptation or exacerbates pollution-related harm, providing essential insights for future mechanistic research and evidence-based public policies.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.