The impact of environment-based heterogeneous bounded confidence on opinion dynamics

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Lan Zhang , Shun Gao
{"title":"The impact of environment-based heterogeneous bounded confidence on opinion dynamics","authors":"Lan Zhang ,&nbsp;Shun Gao","doi":"10.1016/j.chaos.2025.117293","DOIUrl":null,"url":null,"abstract":"<div><div>In the bounded confidence model of opinion dynamics, agents only consider opinion interaction when the difference between their opinions is smaller than the bounded confidence. It is commonly assumed in previous studies that individuals possess homogeneous bounded confidence. However, in real life, agents in different environments may have different bounded confidences. This paper proposes a ring-based model that links the bounded confidences of agents to their local order parameters by introducing parameters <span><math><mi>α</mi></math></span> and <span><math><mi>ϵ</mi></math></span> to modulate their functional relationship, where <span><math><mi>α</mi></math></span> controls the social attitudes of individuals in the population and <span><math><mi>ϵ</mi></math></span> represents the maximum allowed bounded confidence. The results indicate that smaller values of <span><math><mi>α</mi></math></span> promote a higher probability of consensus in the system. By examining the evolution of agents’ local order parameters and bounded confidences from a microscopic perspective, we explain how <span><math><mi>α</mi></math></span> influences opinion dynamics. Subsequently, we investigate opinion evolution under different degrees for each agent and find that, although parameter selection affects the final outcome to some extent, an optimal degree generally exists that maximizes the system’s consensus probability. Finally, we discuss the impact of the parameter <span><math><mi>ϵ</mi></math></span> on opinion dynamics, revealing that for larger values of <span><math><mi>α</mi></math></span>, there exists an optimal <span><math><mi>ϵ</mi></math></span> that maximizes the probability of consensus.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117293"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013062","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In the bounded confidence model of opinion dynamics, agents only consider opinion interaction when the difference between their opinions is smaller than the bounded confidence. It is commonly assumed in previous studies that individuals possess homogeneous bounded confidence. However, in real life, agents in different environments may have different bounded confidences. This paper proposes a ring-based model that links the bounded confidences of agents to their local order parameters by introducing parameters α and ϵ to modulate their functional relationship, where α controls the social attitudes of individuals in the population and ϵ represents the maximum allowed bounded confidence. The results indicate that smaller values of α promote a higher probability of consensus in the system. By examining the evolution of agents’ local order parameters and bounded confidences from a microscopic perspective, we explain how α influences opinion dynamics. Subsequently, we investigate opinion evolution under different degrees for each agent and find that, although parameter selection affects the final outcome to some extent, an optimal degree generally exists that maximizes the system’s consensus probability. Finally, we discuss the impact of the parameter ϵ on opinion dynamics, revealing that for larger values of α, there exists an optimal ϵ that maximizes the probability of consensus.
基于环境的异质有界信心对意见动态的影响
在意见动态的有界置信度模型中,agent只在意见差异小于有界置信度时才考虑意见交互。在以往的研究中,通常假设个体具有同质有界自信。然而,在现实生活中,不同环境中的智能体可能具有不同的有界置信度。本文提出了一个基于环的模型,通过引入参数α和λ来调节它们的函数关系,将代理的有界置信度与它们的局部阶参数联系起来,其中α控制总体中个体的社会态度,而λ代表允许的最大有界置信度。结果表明,α值越小,系统达成一致的概率越高。通过从微观角度考察代理的局部顺序参数和有界置信度的演变,我们解释了α如何影响意见动态。随后,我们考察了各智能体在不同程度下的意见演变,发现虽然参数选择在一定程度上影响最终结果,但通常存在一个使系统的共识概率最大化的最优程度。最后,我们讨论了参数御柱对意见动态的影响,揭示了对于较大的α值,存在一个使共识概率最大化的最优御柱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信