Reducing polarization in social networks with adversarial opinion perturbations

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Lan Zhang , Lulu Gong , Changwei Huang
{"title":"Reducing polarization in social networks with adversarial opinion perturbations","authors":"Lan Zhang ,&nbsp;Lulu Gong ,&nbsp;Changwei Huang","doi":"10.1016/j.chaos.2025.117294","DOIUrl":null,"url":null,"abstract":"<div><div>The influence of perturbations on the evolution of opinions is a significant topic in complex systems and sociophysics. Previous studies have suggested that perturbations can alter opinion distributions, either promoting or inhibiting consensus formation. In this paper, we propose a model that integrates complex network topology and adversarial perturbations to simulate social opinion dynamics. Four main parameters are considered: social sensitivity, homophily, perturbation intensity, and network-connection probability. Our numerical simulations show that three primary patterns of collective opinion can emerge: consensus, radicalization, and polarization. Higher social sensitivity strengthens the radicalization and polarization states, while stronger homophily leads to more polarized opinions. Increased connection probability intensifies polarization by increasing network connectivity; however, adversarial perturbations reduce the prevalence of radicalization and polarization states, with stronger perturbations producing greater reductions. We employ microscopic evolutionary analysis to explain this pattern. These findings point to the important role of network structure and adversarial perturbations in reducing extreme states, offering theoretical insights for addressing societal polarization.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"201 ","pages":"Article 117294"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925013074","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The influence of perturbations on the evolution of opinions is a significant topic in complex systems and sociophysics. Previous studies have suggested that perturbations can alter opinion distributions, either promoting or inhibiting consensus formation. In this paper, we propose a model that integrates complex network topology and adversarial perturbations to simulate social opinion dynamics. Four main parameters are considered: social sensitivity, homophily, perturbation intensity, and network-connection probability. Our numerical simulations show that three primary patterns of collective opinion can emerge: consensus, radicalization, and polarization. Higher social sensitivity strengthens the radicalization and polarization states, while stronger homophily leads to more polarized opinions. Increased connection probability intensifies polarization by increasing network connectivity; however, adversarial perturbations reduce the prevalence of radicalization and polarization states, with stronger perturbations producing greater reductions. We employ microscopic evolutionary analysis to explain this pattern. These findings point to the important role of network structure and adversarial perturbations in reducing extreme states, offering theoretical insights for addressing societal polarization.
通过对抗性意见干扰减少社会网络的两极分化
扰动对意见演变的影响是复杂系统和社会物理学中的一个重要课题。先前的研究表明,扰动可以改变意见分布,促进或抑制共识的形成。在本文中,我们提出了一个集成复杂网络拓扑和对抗性扰动的模型来模拟社会舆论动态。考虑了四个主要参数:社会敏感性、同质性、扰动强度和网络连接概率。我们的数值模拟表明,集体意见可以出现三种主要模式:共识、激进化和两极分化。较高的社会敏感性强化了激进化和两极分化状态,而较强的同质性则导致了更极化的观点。连接概率的增加通过增加网络连通性而加剧极化;然而,对抗性扰动减少了激进化和极化状态的流行,更强的扰动产生更大的减少。我们采用微观进化分析来解释这种模式。这些发现指出了网络结构和对抗性扰动在减少极端状态中的重要作用,为解决社会两极分化问题提供了理论见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信