Samuel K. Sheppard, Nicolas Arning, David W. Eyre, Daniel J. Wilson
{"title":"Machine learning and statistical inference in microbial population genomics","authors":"Samuel K. Sheppard, Nicolas Arning, David W. Eyre, Daniel J. Wilson","doi":"10.1186/s13059-025-03775-4","DOIUrl":null,"url":null,"abstract":"The availability of large genome datasets has changed the microbiology research landscape. Analyzing such data requires computationally demanding analyses, and new approaches have come from different data analysis philosophies. Machine learning and statistical inference have overlapping knowledge discovery aims and approaches. However, machine learning focuses on optimizing prediction, whereas statistical inference focuses on understanding the processes relating variables. In this review, we outline the different aspirations, precepts, and resulting methodologies, with examples from microbial genomics. Emphasizing complementarity, we argue that the combination and synthesis of machine learning and statistics has potential for pathogen research in the big data era.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"1 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03775-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The availability of large genome datasets has changed the microbiology research landscape. Analyzing such data requires computationally demanding analyses, and new approaches have come from different data analysis philosophies. Machine learning and statistical inference have overlapping knowledge discovery aims and approaches. However, machine learning focuses on optimizing prediction, whereas statistical inference focuses on understanding the processes relating variables. In this review, we outline the different aspirations, precepts, and resulting methodologies, with examples from microbial genomics. Emphasizing complementarity, we argue that the combination and synthesis of machine learning and statistics has potential for pathogen research in the big data era.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.