Genomic typing, antimicrobial resistance gene, virulence factor and plasmid replicon database for the important pathogenic bacteria Staphylococcus aureus.
Andrey Shelenkov, Anna Slavokhotova, Mariyam Yunusova, Vladimir Kulikov, Yulia Mikhaylova, Vasiliy Akimkin
{"title":"Genomic typing, antimicrobial resistance gene, virulence factor and plasmid replicon database for the important pathogenic bacteria Staphylococcus aureus.","authors":"Andrey Shelenkov, Anna Slavokhotova, Mariyam Yunusova, Vladimir Kulikov, Yulia Mikhaylova, Vasiliy Akimkin","doi":"10.1186/s12863-025-01363-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bacterial infections pose a global health threat across clinical and community settings. Over the past decade, the alarming expansion of antimicrobial resistance (AMR) has progressively narrowed therapeutic options, particularly for healthcare-associated infections. This critical situation has been formally recognized by the World Health Organization as a major public health concern. Epidemiological studies have demonstrated that the dissemination of AMR is frequently mediated by specific high-risk bacterial lineages, often designated as \"global clones\" or \"clonal complexes.\" Consequently, surveillance of these epidemic clones and elucidation of their pathogenic mechanisms and AMR acquisition pathways have become essential research priorities. The advent of whole genome sequencing has revolutionized these investigations, enabling comprehensive epidemiological tracking and detailed analysis of mobile genetic elements responsible for resistance gene transfer. However, despite the exponential increase in available bacterial genome sequences, significant challenges persist. Current genomic datasets often suffer from uneven representation of clinically relevant strains and inconsistent availability of accompanying metadata. These limitations create substantial obstacles for large-scale comparative studies and hinder effective surveillance efforts.</p><p><strong>Description: </strong>This database represents a comprehensive genomic analysis of 98,950 Staphylococcus aureus isolates, a high-priority bacterial pathogen of global clinical significance. We provide detailed isolate characterization through several established typing schemes including multilocus sequence typing (MLST), clonal complex (CC) assignments, spa typing results, and core genome MLST (cgMLST) profiles. The dataset also documents the presence of CRISPR-Cas systems in these isolates. Beyond fundamental typing data, our resource incorporates the distribution of antimicrobial resistance determinants, virulence factors, and plasmid replicons. These systematically curated genomic features offer researchers valuable insights into isolate epidemiology, resistance mechanisms, and horizontal gene transfer patterns in this highly concerning pathogen.</p><p><strong>Conclusion: </strong>This database is freely available under CC BY-NC-SA at https://doi.org/10.5281/zenodo.14833440 . The data provided enables researchers to identify optimal reference isolates for various genomic studies, supporting critical investigations into S. aureus epidemiology and antimicrobial resistance evolution. This resource will ultimately inform the development of more effective prevention and control measures against this high-priority pathogen.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"26 1","pages":"65"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12465433/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC genomic data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12863-025-01363-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Bacterial infections pose a global health threat across clinical and community settings. Over the past decade, the alarming expansion of antimicrobial resistance (AMR) has progressively narrowed therapeutic options, particularly for healthcare-associated infections. This critical situation has been formally recognized by the World Health Organization as a major public health concern. Epidemiological studies have demonstrated that the dissemination of AMR is frequently mediated by specific high-risk bacterial lineages, often designated as "global clones" or "clonal complexes." Consequently, surveillance of these epidemic clones and elucidation of their pathogenic mechanisms and AMR acquisition pathways have become essential research priorities. The advent of whole genome sequencing has revolutionized these investigations, enabling comprehensive epidemiological tracking and detailed analysis of mobile genetic elements responsible for resistance gene transfer. However, despite the exponential increase in available bacterial genome sequences, significant challenges persist. Current genomic datasets often suffer from uneven representation of clinically relevant strains and inconsistent availability of accompanying metadata. These limitations create substantial obstacles for large-scale comparative studies and hinder effective surveillance efforts.
Description: This database represents a comprehensive genomic analysis of 98,950 Staphylococcus aureus isolates, a high-priority bacterial pathogen of global clinical significance. We provide detailed isolate characterization through several established typing schemes including multilocus sequence typing (MLST), clonal complex (CC) assignments, spa typing results, and core genome MLST (cgMLST) profiles. The dataset also documents the presence of CRISPR-Cas systems in these isolates. Beyond fundamental typing data, our resource incorporates the distribution of antimicrobial resistance determinants, virulence factors, and plasmid replicons. These systematically curated genomic features offer researchers valuable insights into isolate epidemiology, resistance mechanisms, and horizontal gene transfer patterns in this highly concerning pathogen.
Conclusion: This database is freely available under CC BY-NC-SA at https://doi.org/10.5281/zenodo.14833440 . The data provided enables researchers to identify optimal reference isolates for various genomic studies, supporting critical investigations into S. aureus epidemiology and antimicrobial resistance evolution. This resource will ultimately inform the development of more effective prevention and control measures against this high-priority pathogen.