Ada Radu, Andrei-Flavius Radu, Gabriela S Bungau, Delia Mirela Tit, Paul Andrei Negru
{"title":"Tracing Five Decades of Psoriasis Pharmacotherapy: A Large-Scale Bibliometric Investigation with AI-Guided Terminology Normalization.","authors":"Ada Radu, Andrei-Flavius Radu, Gabriela S Bungau, Delia Mirela Tit, Paul Andrei Negru","doi":"10.3390/ph18091422","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Large-scale bibliometric assessments of psoriasis pharmacotherapy research remain limited despite significant research output in this rapidly evolving field. This study aimed to map the evolution of systemic psoriasis therapy research over five decades and demonstrate how systematic analysis of research trajectories can illuminate the transformation of specialized medical fields into central components of precision medicine. <b>Methods</b>: A comprehensive bibliometric analysis was conducted using Web of Science Core Collection as the single data source, examining 19,284 publications spanning 1975-2025. The methodology employed AI-enhanced terminology normalization for standardizing pharmaceutical nomenclature, VOSviewer version 1.6.20 for network visualization, and Bibliometrix package for temporal trend analysis and thematic evolution mapping. International collaboration networks, thematic evolution across three distinct periods (1975-2000, 2001-2010, 2011-2025), and citation impact patterns were systematically analyzed. <b>Results</b>: Four distinct developmental phases were identified, with publications growing from 9 articles in 1975 to 1638 in 2024. The United States dominated research output with 5959 documents, while Canada achieved the highest citation efficiency at 62.65 citations per document. Global collaboration encompassed 70 countries organized into four regional clusters, with a 28-nation Asia-Pacific-Africa-Middle East alliance representing the largest collaborative group. Citation impact peaked during 2001-2008, coinciding with revolutionary biological therapy introduction. Thematic evolution demonstrated systematic transformation from two foundational themes to nine specialized domains, ultimately consolidating into four core areas focused on targeted therapeutics and evidence-based methodologies. Keyword analysis demonstrated progression from basic immunological studies to sophisticated targeted interventions, evolving from tumor necrosis factor alpha inhibitors to contemporary interleukin-17/interleukin-23 pathway targeting and Janus kinase inhibitors. <b>Conclusions</b>: Over five decades, psoriasis therapeutics research has shifted from a niche dermatological discipline to a central model for innovation in immune-mediated diseases. This evolution illustrates how bibliometric approaches can capture the dynamics of scientific transformation, offering strategic insights for guiding pharmaceutical innovation, shaping research priorities, and informing precision medicine strategies across inflammatory conditions.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473059/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18091422","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Large-scale bibliometric assessments of psoriasis pharmacotherapy research remain limited despite significant research output in this rapidly evolving field. This study aimed to map the evolution of systemic psoriasis therapy research over five decades and demonstrate how systematic analysis of research trajectories can illuminate the transformation of specialized medical fields into central components of precision medicine. Methods: A comprehensive bibliometric analysis was conducted using Web of Science Core Collection as the single data source, examining 19,284 publications spanning 1975-2025. The methodology employed AI-enhanced terminology normalization for standardizing pharmaceutical nomenclature, VOSviewer version 1.6.20 for network visualization, and Bibliometrix package for temporal trend analysis and thematic evolution mapping. International collaboration networks, thematic evolution across three distinct periods (1975-2000, 2001-2010, 2011-2025), and citation impact patterns were systematically analyzed. Results: Four distinct developmental phases were identified, with publications growing from 9 articles in 1975 to 1638 in 2024. The United States dominated research output with 5959 documents, while Canada achieved the highest citation efficiency at 62.65 citations per document. Global collaboration encompassed 70 countries organized into four regional clusters, with a 28-nation Asia-Pacific-Africa-Middle East alliance representing the largest collaborative group. Citation impact peaked during 2001-2008, coinciding with revolutionary biological therapy introduction. Thematic evolution demonstrated systematic transformation from two foundational themes to nine specialized domains, ultimately consolidating into four core areas focused on targeted therapeutics and evidence-based methodologies. Keyword analysis demonstrated progression from basic immunological studies to sophisticated targeted interventions, evolving from tumor necrosis factor alpha inhibitors to contemporary interleukin-17/interleukin-23 pathway targeting and Janus kinase inhibitors. Conclusions: Over five decades, psoriasis therapeutics research has shifted from a niche dermatological discipline to a central model for innovation in immune-mediated diseases. This evolution illustrates how bibliometric approaches can capture the dynamics of scientific transformation, offering strategic insights for guiding pharmaceutical innovation, shaping research priorities, and informing precision medicine strategies across inflammatory conditions.
PharmaceuticalsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍:
Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.