Homogenization of parabolic problems for non-local convolution type operators under non-diffusive scaling of coefficients

IF 1.6 3区 数学 Q1 MATHEMATICS
A. Piatnitski, E. Zhizhina
{"title":"Homogenization of parabolic problems for non-local convolution type operators under non-diffusive scaling of coefficients","authors":"A. Piatnitski,&nbsp;E. Zhizhina","doi":"10.1007/s13324-025-01089-z","DOIUrl":null,"url":null,"abstract":"<div><p>We study homogenization problem for non-autonomous parabolic equations of the form <span>\\(\\partial _t u=L(t)u\\)</span> with an integral convolution type operator <i>L</i>(<i>t</i>) that has a non-symmetric jump kernel which is periodic in spatial variables and in time. It is assumed that the space-time scaling of the environment is not diffusive. We show that asymptotically the spatial and temporal evolutions of the solutions are getting decoupled, and the homogenization result holds in a moving frame.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01089-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01089-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study homogenization problem for non-autonomous parabolic equations of the form \(\partial _t u=L(t)u\) with an integral convolution type operator L(t) that has a non-symmetric jump kernel which is periodic in spatial variables and in time. It is assumed that the space-time scaling of the environment is not diffusive. We show that asymptotically the spatial and temporal evolutions of the solutions are getting decoupled, and the homogenization result holds in a moving frame.

系数非扩散标度下非局部卷积型算子抛物型问题的均匀化
研究了形式为\(\partial _t u=L(t)u\)的非自治抛物方程的齐次化问题,该方程具有积分卷积型算子L(t),该算子具有空间变量和时间周期的非对称跳跃核。假设环境的时空尺度是非扩散的。我们证明了解的时空演化渐近解耦,并且均匀化结果在运动坐标系中成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信