Lorentzian metric spaces and GH-convergence: the unbounded case

IF 1.4 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
A. Bykov, E. Minguzzi, S. Suhr
{"title":"Lorentzian metric spaces and GH-convergence: the unbounded case","authors":"A. Bykov,&nbsp;E. Minguzzi,&nbsp;S. Suhr","doi":"10.1007/s11005-025-01941-0","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a notion of Lorentzian metric space which drops the boundedness condition from our previous work and argue that the properties defining our spaces are minimal. In fact, they are defined by three conditions given by (a) the reverse triangle inequality for chronologically related events, (b) Lorentzian distance continuity and relative compactness of chronological diamonds, and (c) a distinguishing condition via the Lorentzian distance function. By adding a countably generating condition, we confirm the validity of desirable properties for our spaces including the Polish property. The definition of (pre)length space given in our previous work on the bounded case is generalized to this setting. We also define a notion of Gromov–Hausdorff convergence for Lorentzian metric spaces and prove that (pre)length spaces are GH-stable. It is also shown that our (sequenced) Lorentzian metric spaces bring a natural quasi-uniformity (resp. quasi-metric). Finally, an explicit comparison with other recent constructions based on our previous work on bounded Lorentzian metric spaces is presented.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01941-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01941-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a notion of Lorentzian metric space which drops the boundedness condition from our previous work and argue that the properties defining our spaces are minimal. In fact, they are defined by three conditions given by (a) the reverse triangle inequality for chronologically related events, (b) Lorentzian distance continuity and relative compactness of chronological diamonds, and (c) a distinguishing condition via the Lorentzian distance function. By adding a countably generating condition, we confirm the validity of desirable properties for our spaces including the Polish property. The definition of (pre)length space given in our previous work on the bounded case is generalized to this setting. We also define a notion of Gromov–Hausdorff convergence for Lorentzian metric spaces and prove that (pre)length spaces are GH-stable. It is also shown that our (sequenced) Lorentzian metric spaces bring a natural quasi-uniformity (resp. quasi-metric). Finally, an explicit comparison with other recent constructions based on our previous work on bounded Lorentzian metric spaces is presented.

洛伦兹度量空间与gh收敛:无界情况
我们引入了洛伦兹度量空间的概念,它抛弃了我们以前工作中的有界性条件,并论证了定义我们空间的性质是最小的。事实上,它们是由以下三个条件定义的:(a)时间相关事件的逆三角形不等式,(b)时间钻石的洛伦兹距离连续性和相对紧性,以及(c)通过洛伦兹距离函数的区分条件。通过添加可数生成条件,我们确认了空间的理想性质的有效性,包括波兰性质。在我们之前关于有界情况的工作中给出的(预)长度空间的定义推广到这种情况。我们还定义了Lorentzian度量空间的Gromov-Hausdorff收敛的概念,并证明了(预)长度空间是gh稳定的。本文还证明了我们的(有序的)洛伦兹度量空间具有自然的拟均匀性。非对称度量)。最后,与其他基于我们之前关于有界洛伦兹度量空间的工作的最新构造进行了明确的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信