{"title":"Upper Bounds for Steklov Eigenvalues of a Hypersurface of Revolution","authors":"D. Seliutskii","doi":"10.1134/S1061920824601605","DOIUrl":null,"url":null,"abstract":"<p> In this paper, we find an upper bound for the first Steklov eigenvalue for a surface of revolution with boundary consisting of two spheres of different radii. Moreover, we prove that, in some cases, this boundary is sharp. </p><p> <b> DOI</b> 10.1134/S1061920824601605 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"32 2","pages":"399 - 407"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824601605","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we find an upper bound for the first Steklov eigenvalue for a surface of revolution with boundary consisting of two spheres of different radii. Moreover, we prove that, in some cases, this boundary is sharp.
期刊介绍:
Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.