{"title":"Relative field theories via relative dualizability","authors":"Claudia Scheimbauer, Thomas Stempfhuber","doi":"10.1007/s11005-025-01948-7","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate relative versions of dualizability designed for relative versions of topological field theories (TFTs), also called twisted TFTs, or quiche TFTs in the context of symmetries. In even dimensions, we show an equivalence between lax and oplax fully extended framed relative topological field theories valued in an <span>\\((\\infty , N)\\text {-}\\)</span> category in terms of adjunctibility. Motivated by this, we systematically investigate higher adjunctibility conditions and their implications for relative TFTs. Our analysis leads us to identify the oplax relative TFT as the notion of choice. Finally, for fun we explore a tree version of adjunctibility and compute the number of equivalence classes thereof.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01948-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01948-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate relative versions of dualizability designed for relative versions of topological field theories (TFTs), also called twisted TFTs, or quiche TFTs in the context of symmetries. In even dimensions, we show an equivalence between lax and oplax fully extended framed relative topological field theories valued in an \((\infty , N)\text {-}\) category in terms of adjunctibility. Motivated by this, we systematically investigate higher adjunctibility conditions and their implications for relative TFTs. Our analysis leads us to identify the oplax relative TFT as the notion of choice. Finally, for fun we explore a tree version of adjunctibility and compute the number of equivalence classes thereof.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.