Semiclassical Trace Formula for the Bochner–Schrödinger Operator

IF 1.5 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Yu.A. Kordyukov
{"title":"Semiclassical Trace Formula for the Bochner–Schrödinger Operator","authors":"Yu.A. Kordyukov","doi":"10.1134/S1061920825600333","DOIUrl":null,"url":null,"abstract":"<p> We study the semiclassical Bochner–Schrödinger operator <span>\\(H_{p}=\\frac{1}{p^2}\\Delta^{L^p\\otimes E}+V\\)</span> on tensor powers <span>\\(L^p\\)</span> of a Hermitian line bundle <span>\\(L\\)</span> twisted by a Hermitian vector bundle <span>\\(E\\)</span> on a Riemannian manifold of bounded geometry. For any function <span>\\(\\varphi\\in C^\\infty_c(\\mathbb R)\\)</span>, we consider the bounded linear operator <span>\\(\\varphi(H_p)\\)</span> in <span>\\(L^2(X,L^p\\otimes E)\\)</span> defined by the spectral theorem. We prove that its smooth Schwartz kernel on the diagonal admits a complete asymptotic expansion in powers of <span>\\(p^{-1}\\)</span> in the semiclassical limit <span>\\(p\\to \\infty\\)</span>. In particular, when the manifold is compact, we get a complete asymptotic expansion for the trace of <span>\\(\\varphi(H_p)\\)</span>. </p><p> <b> DOI</b> 10.1134/S1061920825600333 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"32 2","pages":"297 - 313"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920825600333","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the semiclassical Bochner–Schrödinger operator \(H_{p}=\frac{1}{p^2}\Delta^{L^p\otimes E}+V\) on tensor powers \(L^p\) of a Hermitian line bundle \(L\) twisted by a Hermitian vector bundle \(E\) on a Riemannian manifold of bounded geometry. For any function \(\varphi\in C^\infty_c(\mathbb R)\), we consider the bounded linear operator \(\varphi(H_p)\) in \(L^2(X,L^p\otimes E)\) defined by the spectral theorem. We prove that its smooth Schwartz kernel on the diagonal admits a complete asymptotic expansion in powers of \(p^{-1}\) in the semiclassical limit \(p\to \infty\). In particular, when the manifold is compact, we get a complete asymptotic expansion for the trace of \(\varphi(H_p)\).

DOI 10.1134/S1061920825600333

Bochner-Schrödinger算子的半经典轨迹公式
研究了有界几何黎曼流形上被厄米向量束\(E\)扭曲的厄米线束\(L\)张量幂\(L^p\)上的半经典Bochner-Schrödinger算子\(H_{p}=\frac{1}{p^2}\Delta^{L^p\otimes E}+V\)。对于任意函数\(\varphi\in C^\infty_c(\mathbb R)\),考虑由谱定理定义的\(L^2(X,L^p\otimes E)\)中的有界线性算子\(\varphi(H_p)\)。我们证明了它在对角线上的光滑Schwartz核在半经典极限\(p\to \infty\)下允许在\(p^{-1}\)次幂上的完全渐近展开式。特别地,当流形紧致时,我们得到了\(\varphi(H_p)\)轨迹的完全渐近展开式。Doi 10.1134/ s1061920825600333
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信