Invariant Monge–Ampère equations on contactified para–Kähler manifolds

IF 0.7 3区 数学 Q3 MATHEMATICS
Dmitri Alekseevsky, Gianni Manno, Giovanni Moreno
{"title":"Invariant Monge–Ampère equations on contactified para–Kähler manifolds","authors":"Dmitri Alekseevsky,&nbsp;Gianni Manno,&nbsp;Giovanni Moreno","doi":"10.1007/s10455-025-09999-8","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a method for describing invariant PDEs of Monge–Ampère type in the sense of Lychagin and Morimoto (MAE) on a homogeneous contact manifold <i>N</i> of a semisimple Lie group <i>G</i>, which is the <i>contactification</i> of the homogeneous symplectic manifold <span>\\(M = G/H = \\textrm{Ad}_G Z \\subset \\mathfrak {g}\\)</span>, where <i>M</i> is the adjoint orbit of a splittable closed element <i>Z</i> of the Lie algebra <span>\\(\\mathfrak {g}= {{\\,\\textrm{Lie}\\,}}(G)\\)</span>. The method is then applied to a ten-dimensional semisimple orbit <i>M</i> of the exceptional Lie group <span>\\(\\textsf{G}_2\\)</span> and a complete list of mutually non-equivalent MAEs on <i>N</i> is obtained.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"67 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-025-09999-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-09999-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a method for describing invariant PDEs of Monge–Ampère type in the sense of Lychagin and Morimoto (MAE) on a homogeneous contact manifold N of a semisimple Lie group G, which is the contactification of the homogeneous symplectic manifold \(M = G/H = \textrm{Ad}_G Z \subset \mathfrak {g}\), where M is the adjoint orbit of a splittable closed element Z of the Lie algebra \(\mathfrak {g}= {{\,\textrm{Lie}\,}}(G)\). The method is then applied to a ten-dimensional semisimple orbit M of the exceptional Lie group \(\textsf{G}_2\) and a complete list of mutually non-equivalent MAEs on N is obtained.

接触para-Kähler流形上的不变monge - ampante方程
在半单李群G的齐次接触流形N上,给出了一种Lychagin和Morimoto (MAE)意义上的monge - amp型不变量偏微分方程的描述方法,该方法是齐次辛流形\(M = G/H = \textrm{Ad}_G Z \subset \mathfrak {g}\)的接触,其中M是李代数\(\mathfrak {g}= {{\,\textrm{Lie}\,}}(G)\)的可分闭元Z的伴随轨道。将该方法应用于例外李群\(\textsf{G}_2\)的十维半简单轨道M,得到了N上相互不等价MAEs的完整列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信