{"title":"Quasi-static crushing response analysis of a novel 3D double re-entrant auxetic metamaterial","authors":"Chenfeng Chen, Weikai Xu, Hong Hai, Zheng Zhao, Weifu Sun, Wei Wang, Saiwei Cheng","doi":"10.1007/s10999-025-09754-8","DOIUrl":null,"url":null,"abstract":"<div><p>In a 2D negative Poisson’s ratio (NPR) material, stretching (or compressing) in one direction results in expansion (or contraction) in the perpendicular direction, which limits its range of applications. Based on the 2D double re-entrant honeycomb (DRH) structure, this paper proposes three 3D DRH structures and derives the mechanical properties of these NPR structures. These 3D honeycomb structures are then fabricated using 3D printing technology, and their deformation behavior under uniaxial quasi-static loading is systematically investigated through experimental and simulation methods. By combining finite element analysis, experimental tests, and theoretical derivation, this study discusses the mechanical properties of the specimens, such as Poisson’s ratio behavior in detail. Furthermore, the energy absorption capacities of several 3D structures under quasi-static loading are compared. The results show that the finite element simulations, theoretical predictions, and experimental findings are in good agreement, and the 3D DRH structure exhibits a more stable concave mechanism, a higher energy absorption range, and better specific energy absorption compared to the 2D DRH structure.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"21 3","pages":"627 - 640"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-025-09754-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In a 2D negative Poisson’s ratio (NPR) material, stretching (or compressing) in one direction results in expansion (or contraction) in the perpendicular direction, which limits its range of applications. Based on the 2D double re-entrant honeycomb (DRH) structure, this paper proposes three 3D DRH structures and derives the mechanical properties of these NPR structures. These 3D honeycomb structures are then fabricated using 3D printing technology, and their deformation behavior under uniaxial quasi-static loading is systematically investigated through experimental and simulation methods. By combining finite element analysis, experimental tests, and theoretical derivation, this study discusses the mechanical properties of the specimens, such as Poisson’s ratio behavior in detail. Furthermore, the energy absorption capacities of several 3D structures under quasi-static loading are compared. The results show that the finite element simulations, theoretical predictions, and experimental findings are in good agreement, and the 3D DRH structure exhibits a more stable concave mechanism, a higher energy absorption range, and better specific energy absorption compared to the 2D DRH structure.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.