On the second coefficient in the semi-classical expansion of toeplitz operators

IF 1.6 3区 数学 Q1 MATHEMATICS
Chin-Chia Chang, Hendrik Herrmann, Chin-Yu Hsiao
{"title":"On the second coefficient in the semi-classical expansion of toeplitz operators","authors":"Chin-Chia Chang,&nbsp;Hendrik Herrmann,&nbsp;Chin-Yu Hsiao","doi":"10.1007/s13324-025-01105-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>X</i> be a compact strictly pseudoconvex embeddable CR manifold and let <i>A</i> be the Toeplitz operator on <i>X</i> associated with a Reeb vector field <span>\\({\\mathcal {T}}\\in {\\mathscr {C}}^\\infty (X,TX)\\)</span>. Consider the operator <span>\\(\\chi _k(A)\\)</span> defined by the functional calculus of <i>A</i>, where <span>\\(\\chi \\)</span> is a smooth function with compact support in the positive real line and <span>\\(\\chi _k(\\lambda ):=\\chi (k^{-1}\\lambda )\\)</span>. It was established recently that <span>\\(\\chi _k(A)(x,y)\\)</span> admits a full asymptotic expansion in <i>k</i> when <span>\\(k\\)</span> becomes large. The second coefficient of the expansion plays an important role in the further studies of CR geometry. In this work, we calculate the second coefficient of the expansion.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01105-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01105-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a compact strictly pseudoconvex embeddable CR manifold and let A be the Toeplitz operator on X associated with a Reeb vector field \({\mathcal {T}}\in {\mathscr {C}}^\infty (X,TX)\). Consider the operator \(\chi _k(A)\) defined by the functional calculus of A, where \(\chi \) is a smooth function with compact support in the positive real line and \(\chi _k(\lambda ):=\chi (k^{-1}\lambda )\). It was established recently that \(\chi _k(A)(x,y)\) admits a full asymptotic expansion in k when \(k\) becomes large. The second coefficient of the expansion plays an important role in the further studies of CR geometry. In this work, we calculate the second coefficient of the expansion.

关于toeplitz算子半经典展开中的第二系数
设X是紧的严格伪凸可嵌入CR流形,设a是与Reeb向量场相关的X上的Toeplitz算子\({\mathcal {T}}\in {\mathscr {C}}^\infty (X,TX)\)。考虑A的泛函演算定义的算子\(\chi _k(A)\),其中\(\chi \)是一个平滑函数,在正实线和\(\chi _k(\lambda ):=\chi (k^{-1}\lambda )\)上有紧支持。最近已经证明,当\(k\)变大时,\(\chi _k(A)(x,y)\)允许k的完全渐近展开式。展开的第二系数对CR几何的进一步研究具有重要意义。在这项工作中,我们计算了膨胀的第二系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信