A data-driven framework for predicting solar rooftop adoption in Germany based on open-source data

Q2 Energy
Kaan Duran, Antonello Monti
{"title":"A data-driven framework for predicting solar rooftop adoption in Germany based on open-source data","authors":"Kaan Duran,&nbsp;Antonello Monti","doi":"10.1186/s42162-025-00562-0","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid growth of photovoltaic (PV) installation poses a major challenge for the energy transition in Germany. A key concern is that the increasing number of PV systems can create overloads in the low voltage grid, particularly in areas with high concentrations of installations. To better estimate the adoption of industry sized PV systems, a recommendation framework is introduced to assess the probability of adoption for specific companies. The presented framework utilizes openly available data and a hierarchical clustering approach to predict the likelihood of PV adoption for a company. Predicting PV adoption for companies allows identification of potential bottlenecks in the energy grid. As a recommendation system, it can be leveraged to promote PV systems more effectively, targeting areas with high adoption potential and optimizing grid infrastructure planning. In order to achieve that, openly available data sources have been acquired through web scraping. Company data then have been clustered using a hierarchical agglomerative approach. The recall value for the installation prediction showed an average performance of 0.75, which is found sufficient for an elaborated estimate of PV adoption.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00562-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00562-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid growth of photovoltaic (PV) installation poses a major challenge for the energy transition in Germany. A key concern is that the increasing number of PV systems can create overloads in the low voltage grid, particularly in areas with high concentrations of installations. To better estimate the adoption of industry sized PV systems, a recommendation framework is introduced to assess the probability of adoption for specific companies. The presented framework utilizes openly available data and a hierarchical clustering approach to predict the likelihood of PV adoption for a company. Predicting PV adoption for companies allows identification of potential bottlenecks in the energy grid. As a recommendation system, it can be leveraged to promote PV systems more effectively, targeting areas with high adoption potential and optimizing grid infrastructure planning. In order to achieve that, openly available data sources have been acquired through web scraping. Company data then have been clustered using a hierarchical agglomerative approach. The recall value for the installation prediction showed an average performance of 0.75, which is found sufficient for an elaborated estimate of PV adoption.

基于开源数据预测德国屋顶太阳能采用的数据驱动框架
光伏(PV)装置的快速增长对德国的能源转型提出了重大挑战。一个关键的问题是,越来越多的光伏系统可能会在低压电网中造成过载,特别是在安装高度集中的地区。为了更好地估计行业规模的光伏系统的采用,引入了一个建议框架来评估特定公司采用的可能性。所提出的框架利用公开可用的数据和分层聚类方法来预测公司采用光伏的可能性。预测企业的光伏采用率可以识别能源网络中的潜在瓶颈。作为一个推荐系统,它可以更有效地推广光伏系统,针对具有高采用潜力的地区,优化电网基础设施规划。为了实现这一目标,通过网络抓取获取了公开可用的数据源。然后,使用分层聚合方法对公司数据进行聚类。安装预测的召回值显示平均性能为0.75,这足以对PV采用进行详细估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信