Exact theory of the finite-temperature spectral function of Fermi polarons with multiple particle-hole excitations: diagrammatic theory versus Chevy ansatz

IF 5.9
Hui Hu, Jia Wang, Xia-Ji Liu
{"title":"Exact theory of the finite-temperature spectral function of Fermi polarons with multiple particle-hole excitations: diagrammatic theory versus Chevy ansatz","authors":"Hui Hu,&nbsp;Jia Wang,&nbsp;Xia-Ji Liu","doi":"10.1007/s43673-025-00162-w","DOIUrl":null,"url":null,"abstract":"<div><p>By using both diagrammatic theory and Chevy ansatz approach, we derive an exact set of equations, which determines the spectral function of Fermi polarons with multiple particle-hole excitations at nonzero temperature. In the diagrammatic theory, we find out the complete series of Feynman diagrams for the multi-particle vertex functions, when the unregularized contact interaction strength becomes infinitesimal, a typical situation occurring in two- or three-dimensional free space. The latter Chevy ansatz approach is more widely applicable, allowing a nonzero interaction strength. We clarify the equivalence of the two approaches for an infinitesimal interaction strength and show that the variational coefficients in the Chevy ansatz are precisely the on-shell multi-particle vertex functions divided by an excitation energy. Truncated to a particular order of particle-hole excitations, the set of equations can be used to approximately calculate the finite-temperature polaron spectral function, once the numerical singularities in the equations are appropriately treated. As a concrete example, we calculate the finite-temperature spectral function of Fermi polarons in one-dimensional lattices, taking into account all the two-particle-hole excitations. We show that the inclusion of two-particle-hole excitations quantitatively improve the predictions on the polaron spectral function. Our results provide a useful way to solve the challenge problem of accurately predicting the finite-temperature spectral function of Fermi polarons in three-dimensional free space. In addition, our clarification of the complete set of Feynman diagrams for the multi-particle polaron vertex functions may inspire the development of more accurate diagrammatic theories of population-imbalanced strongly interacting Fermi gases, beyond the conventional many-body <i>T</i>-matrix approximation.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"35 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-025-00162-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-025-00162-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By using both diagrammatic theory and Chevy ansatz approach, we derive an exact set of equations, which determines the spectral function of Fermi polarons with multiple particle-hole excitations at nonzero temperature. In the diagrammatic theory, we find out the complete series of Feynman diagrams for the multi-particle vertex functions, when the unregularized contact interaction strength becomes infinitesimal, a typical situation occurring in two- or three-dimensional free space. The latter Chevy ansatz approach is more widely applicable, allowing a nonzero interaction strength. We clarify the equivalence of the two approaches for an infinitesimal interaction strength and show that the variational coefficients in the Chevy ansatz are precisely the on-shell multi-particle vertex functions divided by an excitation energy. Truncated to a particular order of particle-hole excitations, the set of equations can be used to approximately calculate the finite-temperature polaron spectral function, once the numerical singularities in the equations are appropriately treated. As a concrete example, we calculate the finite-temperature spectral function of Fermi polarons in one-dimensional lattices, taking into account all the two-particle-hole excitations. We show that the inclusion of two-particle-hole excitations quantitatively improve the predictions on the polaron spectral function. Our results provide a useful way to solve the challenge problem of accurately predicting the finite-temperature spectral function of Fermi polarons in three-dimensional free space. In addition, our clarification of the complete set of Feynman diagrams for the multi-particle polaron vertex functions may inspire the development of more accurate diagrammatic theories of population-imbalanced strongly interacting Fermi gases, beyond the conventional many-body T-matrix approximation.

具有多重粒子-空穴激励的费米极化子有限温度谱函数的精确理论:图解理论与Chevy ansatz
利用图解理论和Chevy ansatz方法,导出了一组精确的方程,确定了非零温度下多重粒子-空穴激励下费米极化子的谱函数。在图解理论中,我们找到了多粒子顶点函数的完整费曼图系列,当非正则接触相互作用强度变得无穷小时,这是在二维或三维自由空间中发生的典型情况。后一种Chevy ansatz方法更广泛地适用,允许非零交互强度。我们阐明了这两种方法在无限小相互作用强度下的等价性,并证明了Chevy函数中的变分系数恰好是壳上多粒子顶点函数除以激发能。截断到粒子-空穴激励的特定阶数后,只要适当处理了方程中的数值奇异性,该方程组就可以用来近似计算有限温度极化子谱函数。作为一个具体的例子,我们计算了一维晶格中费米极化子的有限温度谱函数,考虑了所有的双粒子空穴激励。结果表明,双粒子空穴激励的加入定量地改善了对极化子谱函数的预测。我们的结果为解决三维自由空间中精确预测费米极化子有限温度谱函数的挑战问题提供了一种有用的方法。此外,我们对多粒子极化子顶点函数的完整费曼图集的澄清可能会激发出更精确的种群不平衡强相互作用费米气体图解理论的发展,超越传统的多体t矩阵近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信