Harmeet Singh, Krishnan Suryanarayanan, Epifanio G. Virga
{"title":"Work and Activation in a Nematic Polymer Network Ribbon","authors":"Harmeet Singh, Krishnan Suryanarayanan, Epifanio G. Virga","doi":"10.1007/s10659-025-10137-5","DOIUrl":null,"url":null,"abstract":"<div><p>We study spontaneous deformations of a ribbon made of nematic polymer networks and activated under the action of a mechanical load. We show that when such ribbons are activated appropriately, the deformations produced can pull back and perform work against the externally applied load. We perform two numerical experiments to demonstrate this effect: (1) the <i>pulling</i> experiment, where the ribbon is pulled longitudinally by a point force, and (2) the <i>bending</i> experiment, where the ribbon is bent out of plane by a terminally applied point force. We quantify the capacity of the ribbon to work against external loads, and compute its dependence on both the ribbon thickness and the imprinted nematic texture (that is, the distribution of the nematic directors across the ribbon’s length). Finally, we compute the efficiency of the activation process. Building on the outcomes of our numerical explorations, we formulate two educated conjectures on how the activation efficiency can in general be improved by acting on both the applied load and the imprinted nematic texture.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-025-10137-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study spontaneous deformations of a ribbon made of nematic polymer networks and activated under the action of a mechanical load. We show that when such ribbons are activated appropriately, the deformations produced can pull back and perform work against the externally applied load. We perform two numerical experiments to demonstrate this effect: (1) the pulling experiment, where the ribbon is pulled longitudinally by a point force, and (2) the bending experiment, where the ribbon is bent out of plane by a terminally applied point force. We quantify the capacity of the ribbon to work against external loads, and compute its dependence on both the ribbon thickness and the imprinted nematic texture (that is, the distribution of the nematic directors across the ribbon’s length). Finally, we compute the efficiency of the activation process. Building on the outcomes of our numerical explorations, we formulate two educated conjectures on how the activation efficiency can in general be improved by acting on both the applied load and the imprinted nematic texture.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.