Work and Activation in a Nematic Polymer Network Ribbon

IF 1.4 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Harmeet Singh, Krishnan Suryanarayanan, Epifanio G. Virga
{"title":"Work and Activation in a Nematic Polymer Network Ribbon","authors":"Harmeet Singh,&nbsp;Krishnan Suryanarayanan,&nbsp;Epifanio G. Virga","doi":"10.1007/s10659-025-10137-5","DOIUrl":null,"url":null,"abstract":"<div><p>We study spontaneous deformations of a ribbon made of nematic polymer networks and activated under the action of a mechanical load. We show that when such ribbons are activated appropriately, the deformations produced can pull back and perform work against the externally applied load. We perform two numerical experiments to demonstrate this effect: (1) the <i>pulling</i> experiment, where the ribbon is pulled longitudinally by a point force, and (2) the <i>bending</i> experiment, where the ribbon is bent out of plane by a terminally applied point force. We quantify the capacity of the ribbon to work against external loads, and compute its dependence on both the ribbon thickness and the imprinted nematic texture (that is, the distribution of the nematic directors across the ribbon’s length). Finally, we compute the efficiency of the activation process. Building on the outcomes of our numerical explorations, we formulate two educated conjectures on how the activation efficiency can in general be improved by acting on both the applied load and the imprinted nematic texture.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-025-10137-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We study spontaneous deformations of a ribbon made of nematic polymer networks and activated under the action of a mechanical load. We show that when such ribbons are activated appropriately, the deformations produced can pull back and perform work against the externally applied load. We perform two numerical experiments to demonstrate this effect: (1) the pulling experiment, where the ribbon is pulled longitudinally by a point force, and (2) the bending experiment, where the ribbon is bent out of plane by a terminally applied point force. We quantify the capacity of the ribbon to work against external loads, and compute its dependence on both the ribbon thickness and the imprinted nematic texture (that is, the distribution of the nematic directors across the ribbon’s length). Finally, we compute the efficiency of the activation process. Building on the outcomes of our numerical explorations, we formulate two educated conjectures on how the activation efficiency can in general be improved by acting on both the applied load and the imprinted nematic texture.

向列相聚合物网状带的工作和活化
我们研究了在机械载荷作用下由向列相聚合物网络组成的条带的自发变形。我们表明,当这种条带被适当激活时,所产生的变形可以拉回并对外部施加的负载进行工作。我们进行了两个数值实验来证明这种效应:(1)拉实验,其中带被一个点力纵向拉,以及(2)弯曲实验,其中带被一个终端施加的点力弯曲出平面。我们量化了色带对抗外部负载的能力,并计算了它对色带厚度和印迹向列纹理(即,在色带长度上的向列方向分布)的依赖。最后,我们计算了活化过程的效率。基于我们数值探索的结果,我们对如何通过作用于外加载荷和印迹向列纹理来提高激活效率提出了两个有根据的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信