{"title":"In Silico Alkali Metals-Based Nanoclusters for Energy Storage: Density of States Studies Towards Modeling of Novel Rechargeable Batteries","authors":"F. Mollaamin, M. Monajjemi","doi":"10.1134/S1990793125700320","DOIUrl":null,"url":null,"abstract":"<p>While lithium-ion batteries have their difficulties, the demand to improve beyond-lithium batteries goes beyond the issues of sustainability and safety. With the pressure for renewable energy resources and the enchantingly digitalized current lifestyle, the need for batteries will augment. Therefore, in this article, it has been evaluated the promising alternative alkali metals of sodium-ion and potassium-ion, batteries. A comprehensive investigation on hydrogen grabbing by Li[SiO–GeO], Na[SiO–GeO] or K[SiO–GeO] was carried out including using DFT computations at the “CAM–B3LYP–D3/6-311+G(<i>d</i>, <i>p</i>)” level of theory. The hypothesis of the hydrogen adsorption phenomenon was confirmed by density distributions of CDD, TDOS, and ELF for nanoclusters of Li[SiO–GeO]–2H<sub>2</sub>, Na[SiO–GeO]–2H<sub>2</sub> or K[SiO–GeO]–2H<sub>2</sub>. The fluctuation in charge density values demonstrates that the electronic densities were mainly located in the boundary of adsorbate/adsorbent atoms during the adsorption status. As the advantages of lithium, sodium or potassium over Si/Ge possess its higher electron and hole motion, allowing lithium, sodium or potassium instruments to operate at higher frequencies than Si/Ge instruments. Among these, sodium-ion batteries seem to show the most promise in terms of initial capacity.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"19 3","pages":"701 - 711"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793125700320","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
While lithium-ion batteries have their difficulties, the demand to improve beyond-lithium batteries goes beyond the issues of sustainability and safety. With the pressure for renewable energy resources and the enchantingly digitalized current lifestyle, the need for batteries will augment. Therefore, in this article, it has been evaluated the promising alternative alkali metals of sodium-ion and potassium-ion, batteries. A comprehensive investigation on hydrogen grabbing by Li[SiO–GeO], Na[SiO–GeO] or K[SiO–GeO] was carried out including using DFT computations at the “CAM–B3LYP–D3/6-311+G(d, p)” level of theory. The hypothesis of the hydrogen adsorption phenomenon was confirmed by density distributions of CDD, TDOS, and ELF for nanoclusters of Li[SiO–GeO]–2H2, Na[SiO–GeO]–2H2 or K[SiO–GeO]–2H2. The fluctuation in charge density values demonstrates that the electronic densities were mainly located in the boundary of adsorbate/adsorbent atoms during the adsorption status. As the advantages of lithium, sodium or potassium over Si/Ge possess its higher electron and hole motion, allowing lithium, sodium or potassium instruments to operate at higher frequencies than Si/Ge instruments. Among these, sodium-ion batteries seem to show the most promise in terms of initial capacity.
期刊介绍:
Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.