{"title":"Squared basis operators related to Bessel functions","authors":"Monika Herzog","doi":"10.1007/s13324-025-01110-5","DOIUrl":null,"url":null,"abstract":"<div><p>Recent studies on linear positive operators have led to the investigation of approximation properties of Szász–Mirkyan operators related to the modified Bessel function of order 0. In this paper, we analyse the asymptotic behavior of these operators, convergence theorems, Voronovskaya and Grüss-Voronovskaya type results. A comparative assessment with classical Szász–Mirakyan operators is also presented. These results may have an impact on wide branches of knowledge, such as probability theory, statistics, physical chemistry, optics, and computer science, especially signal processing.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01110-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01110-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies on linear positive operators have led to the investigation of approximation properties of Szász–Mirkyan operators related to the modified Bessel function of order 0. In this paper, we analyse the asymptotic behavior of these operators, convergence theorems, Voronovskaya and Grüss-Voronovskaya type results. A comparative assessment with classical Szász–Mirakyan operators is also presented. These results may have an impact on wide branches of knowledge, such as probability theory, statistics, physical chemistry, optics, and computer science, especially signal processing.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.