Silva V. Wladimir, Giménez Begoña, Xiaojing Tian, Abarca O. Romina, Almonacid A. Sergio, Sandoval-Hevia Gabriela, Simpson R. Ricardo
{"title":"Exploring CO2-Laser Microperforation: Potential for Enhanced Mass and Thermal Diffusion in Banana (Musa sapientum) Dehydration","authors":"Silva V. Wladimir, Giménez Begoña, Xiaojing Tian, Abarca O. Romina, Almonacid A. Sergio, Sandoval-Hevia Gabriela, Simpson R. Ricardo","doi":"10.1007/s11483-025-09977-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the potential application of CO₂-laser microperforation as a pre-treatment to reduce energy consumption and drying time using three approximate pore density (6, 11 and 24 pores · cm<sup>−2</sup>) and two pore size (220.89 ± 14.15 and 431.96 ± 19.92 µm) to enhance water removal from banana slices during air-drying at 60 °C and 1.2 m · s<sup>−1</sup>. The results demonstrate that CO₂-laser microperforation significantly reduced the dehydration time by up to 40% (from 169 min in control samples to 102 min in treated samples) due to an increased rate of water diffusion. This enhancement was corroborated by a 1.7-fold increase in the effective diffusivity coefficient, a 2.17-fold increase in the surface area-to-volume ratio, and a 1.11-fold improvement in energy absorption tendencies. Post-dehydration analyses revealed that the mechanical and color properties of the banana slices were strongly influenced by the CO₂-laser operational settings, with optimized properties observed for subsequent processing steps. These findings suggest that integrating CO₂-laser microperforation with air-drying processes offers a promising approach to reducing drying times and energy consumption in the food industry, providing a significant advancement in food dehydration technologies.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-025-09977-4","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the potential application of CO₂-laser microperforation as a pre-treatment to reduce energy consumption and drying time using three approximate pore density (6, 11 and 24 pores · cm−2) and two pore size (220.89 ± 14.15 and 431.96 ± 19.92 µm) to enhance water removal from banana slices during air-drying at 60 °C and 1.2 m · s−1. The results demonstrate that CO₂-laser microperforation significantly reduced the dehydration time by up to 40% (from 169 min in control samples to 102 min in treated samples) due to an increased rate of water diffusion. This enhancement was corroborated by a 1.7-fold increase in the effective diffusivity coefficient, a 2.17-fold increase in the surface area-to-volume ratio, and a 1.11-fold improvement in energy absorption tendencies. Post-dehydration analyses revealed that the mechanical and color properties of the banana slices were strongly influenced by the CO₂-laser operational settings, with optimized properties observed for subsequent processing steps. These findings suggest that integrating CO₂-laser microperforation with air-drying processes offers a promising approach to reducing drying times and energy consumption in the food industry, providing a significant advancement in food dehydration technologies.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.