Elastic foundation effect on the small-scale analysis of functionally graded porous microbeams using a modified strain gradient theory

IF 3.6 3区 材料科学 Q2 ENGINEERING, MECHANICAL
Ngoc-Duong Nguyen, Van-Tai Bui, Luan C. Trinh, Quoc-Cuong Le
{"title":"Elastic foundation effect on the small-scale analysis of functionally graded porous microbeams using a modified strain gradient theory","authors":"Ngoc-Duong Nguyen,&nbsp;Van-Tai Bui,&nbsp;Luan C. Trinh,&nbsp;Quoc-Cuong Le","doi":"10.1007/s10999-024-09735-3","DOIUrl":null,"url":null,"abstract":"<div><p>The impact of foundation properties on the mechanical behaviour of microstructures is an essential and compelling area of research in micro/nano-electro-mechanical systems. This study examines the foundation’s influence on the buckling, bending, and free vibration responses of functionally graded (FG) porous microbeams. The beam model is based on a modified strain gradient theory and third-order shear deformation theory. A Ritz solution using Legendre functions is developed to address the governing equations of motion. FG porous microbeams with symmetric (D1) and asymmetric (D2) porosity distribution patterns and three boundary conditions (clamped–clamped, clamped-free, and simply-supported) are thoroughly investigated. A comprehensive analysis scrutinises the effects of elastic foundation, porosity ratio, porosity distribution, boundary condition, and geometry on FG porous microbeams’ buckling, bending, and vibration responses. The findings of this study suggest that the foundation effect is particularly significant for clamped-free beams and D2 beams, and it becomes more pronounced with an increase in the thickness-to-material length scale parameter ratio. This research provides valuable insights into FG porous microbeams on foundations using the modified strain gradient theory, thereby establishing a basis for future investigations. Furthermore, the present results have implications for the design of micro-structured devices.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"21 2","pages":"231 - 259"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-024-09735-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of foundation properties on the mechanical behaviour of microstructures is an essential and compelling area of research in micro/nano-electro-mechanical systems. This study examines the foundation’s influence on the buckling, bending, and free vibration responses of functionally graded (FG) porous microbeams. The beam model is based on a modified strain gradient theory and third-order shear deformation theory. A Ritz solution using Legendre functions is developed to address the governing equations of motion. FG porous microbeams with symmetric (D1) and asymmetric (D2) porosity distribution patterns and three boundary conditions (clamped–clamped, clamped-free, and simply-supported) are thoroughly investigated. A comprehensive analysis scrutinises the effects of elastic foundation, porosity ratio, porosity distribution, boundary condition, and geometry on FG porous microbeams’ buckling, bending, and vibration responses. The findings of this study suggest that the foundation effect is particularly significant for clamped-free beams and D2 beams, and it becomes more pronounced with an increase in the thickness-to-material length scale parameter ratio. This research provides valuable insights into FG porous microbeams on foundations using the modified strain gradient theory, thereby establishing a basis for future investigations. Furthermore, the present results have implications for the design of micro-structured devices.

用修正应变梯度理论分析功能梯度多孔微梁的弹性地基效应
基础特性对微观结构力学行为的影响是微/纳米机电系统研究的一个重要和引人注目的领域。本研究探讨了地基对功能梯度多孔微梁的屈曲、弯曲和自由振动响应的影响。梁模型基于修正应变梯度理论和三阶剪切变形理论。利用勒让德函数提出了一个里兹解来解决运动的控制方程。对具有对称(D1)和非对称(D2)孔隙率分布模式和三种边界条件(夹紧-夹紧、无夹紧和简支)的FG多孔微梁进行了深入研究。综合分析了弹性基础、孔隙率、孔隙率分布、边界条件和几何形状对FG多孔微梁屈曲、弯曲和振动响应的影响。研究结果表明,无夹梁和D2梁的基础效应尤为显著,且随着厚度-材料长度尺度参数比的增大,基础效应更加明显。本研究为利用修正应变梯度理论研究地基FG多孔微梁提供了有价值的见解,为今后的研究奠定了基础。此外,本研究结果对微结构器件的设计也有启示意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mechanics and Materials in Design
International Journal of Mechanics and Materials in Design ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
6.00
自引率
5.40%
发文量
41
审稿时长
>12 weeks
期刊介绍: It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design. Analytical synopsis of contents: The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design: Intelligent Design: Nano-engineering and Nano-science in Design; Smart Materials and Adaptive Structures in Design; Mechanism(s) Design; Design against Failure; Design for Manufacturing; Design of Ultralight Structures; Design for a Clean Environment; Impact and Crashworthiness; Microelectronic Packaging Systems. Advanced Materials in Design: Newly Engineered Materials; Smart Materials and Adaptive Structures; Micromechanical Modelling of Composites; Damage Characterisation of Advanced/Traditional Materials; Alternative Use of Traditional Materials in Design; Functionally Graded Materials; Failure Analysis: Fatigue and Fracture; Multiscale Modelling Concepts and Methodology; Interfaces, interfacial properties and characterisation. Design Analysis and Optimisation: Shape and Topology Optimisation; Structural Optimisation; Optimisation Algorithms in Design; Nonlinear Mechanics in Design; Novel Numerical Tools in Design; Geometric Modelling and CAD Tools in Design; FEM, BEM and Hybrid Methods; Integrated Computer Aided Design; Computational Failure Analysis; Coupled Thermo-Electro-Mechanical Designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信