What Uniqueness for the Holst-Nagy-Tsogtgerel–Maxwell Solutions to the Einstein Conformal Constraint Equations?

IF 0.7 3区 数学 Q3 MATHEMATICS
Romain Gicquaud
{"title":"What Uniqueness for the Holst-Nagy-Tsogtgerel–Maxwell Solutions to the Einstein Conformal Constraint Equations?","authors":"Romain Gicquaud","doi":"10.1007/s10455-025-10000-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the issue of uniqueness of solutions in the conformal method for solving the constraint equations in general relativity with arbitrary mean curvature as developed initially by Holst, Nagy, Tsogtegerel and Maxwell. We show that, under a technical assumption, the solution they construct is unique amongst those having volume below a certain threshold.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"68 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-10000-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the issue of uniqueness of solutions in the conformal method for solving the constraint equations in general relativity with arbitrary mean curvature as developed initially by Holst, Nagy, Tsogtegerel and Maxwell. We show that, under a technical assumption, the solution they construct is unique amongst those having volume below a certain threshold.

爱因斯坦共形约束方程的Holst-Nagy-Tsogtgerel-Maxwell解的唯一性?
本文讨论了Holst, Nagy, Tsogtegerel和Maxwell最初提出的求解任意平均曲率广义相对论约束方程的保形方法中解的唯一性问题。我们表明,在技术假设下,他们构建的解在体积低于某一阈值的解中是唯一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信