Large physics models: towards a collaborative approach with large language models and foundation models

IF 4.8 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Kristian G. Barman, Sascha Caron, Emily Sullivan, Henk W. de Regt, Roberto Ruiz de Austri, Mieke Boon, Michael Färber, Stefan Fröse, Tobias Golling, Luis G. Lopez, Faegheh Hasibi, Lukas Heinrich, Andreas Ipp, Rukshak Kapoor, Gregor Kasieczka, Daniel Kostić, Michael Krämer, Jesus Marco, Sydney Otten, Pawel Pawlowski, Pietro Vischia, Erik Weber, Christoph Weniger
{"title":"Large physics models: towards a collaborative approach with large language models and foundation models","authors":"Kristian G. Barman,&nbsp;Sascha Caron,&nbsp;Emily Sullivan,&nbsp;Henk W. de Regt,&nbsp;Roberto Ruiz de Austri,&nbsp;Mieke Boon,&nbsp;Michael Färber,&nbsp;Stefan Fröse,&nbsp;Tobias Golling,&nbsp;Luis G. Lopez,&nbsp;Faegheh Hasibi,&nbsp;Lukas Heinrich,&nbsp;Andreas Ipp,&nbsp;Rukshak Kapoor,&nbsp;Gregor Kasieczka,&nbsp;Daniel Kostić,&nbsp;Michael Krämer,&nbsp;Jesus Marco,&nbsp;Sydney Otten,&nbsp;Pawel Pawlowski,&nbsp;Pietro Vischia,&nbsp;Erik Weber,&nbsp;Christoph Weniger","doi":"10.1140/epjc/s10052-025-14707-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the development and evaluation of physics-specific large-scale AI models, which we refer to as large physics models (LPMs). These models, based on foundation models such as large language models (LLMs) are tailored to address the unique demands of physics research. LPMs can function independently or as part of an integrated framework. This framework can incorporate specialized tools, including symbolic reasoning modules for mathematical manipulations, frameworks to analyse specific experimental and simulated data, and mechanisms for synthesizing insights from physical theories and scientific literature. We begin by examining whether the physics community should actively develop and refine dedicated models, rather than relying solely on commercial LLMs. We then outline how LPMs can be realized through interdisciplinary collaboration among experts in physics, computer science, and philosophy of science. To integrate these models effectively, we identify three key pillars: Development, Evaluation, and Philosophical Reflection. Development focuses on constructing models capable of processing physics texts, mathematical formulations, and diverse physical data. Evaluation assesses accuracy and reliability through testing and benchmarking. Finally, Philosophical Reflection encompasses the analysis of broader implications of LLMs in physics, including their potential to generate new scientific understanding and what novel collaboration dynamics might arise in research. Inspired by the organizational structure of experimental collaborations in particle physics, we propose a similarly interdisciplinary and collaborative approach to building and refining large physics models. This roadmap provides specific objectives, defines pathways to achieve them, and identifies challenges that must be addressed to realise physics-specific large scale AI models.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14707-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14707-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the development and evaluation of physics-specific large-scale AI models, which we refer to as large physics models (LPMs). These models, based on foundation models such as large language models (LLMs) are tailored to address the unique demands of physics research. LPMs can function independently or as part of an integrated framework. This framework can incorporate specialized tools, including symbolic reasoning modules for mathematical manipulations, frameworks to analyse specific experimental and simulated data, and mechanisms for synthesizing insights from physical theories and scientific literature. We begin by examining whether the physics community should actively develop and refine dedicated models, rather than relying solely on commercial LLMs. We then outline how LPMs can be realized through interdisciplinary collaboration among experts in physics, computer science, and philosophy of science. To integrate these models effectively, we identify three key pillars: Development, Evaluation, and Philosophical Reflection. Development focuses on constructing models capable of processing physics texts, mathematical formulations, and diverse physical data. Evaluation assesses accuracy and reliability through testing and benchmarking. Finally, Philosophical Reflection encompasses the analysis of broader implications of LLMs in physics, including their potential to generate new scientific understanding and what novel collaboration dynamics might arise in research. Inspired by the organizational structure of experimental collaborations in particle physics, we propose a similarly interdisciplinary and collaborative approach to building and refining large physics models. This roadmap provides specific objectives, defines pathways to achieve them, and identifies challenges that must be addressed to realise physics-specific large scale AI models.

大型物理模型:采用大型语言模型和基础模型的协作方法
本文探讨了物理特定的大规模人工智能模型的开发和评估,我们将其称为大型物理模型(lpm)。这些基于基础模型(如大型语言模型(llm))的模型是为满足物理研究的独特需求而量身定制的。lpm可以独立运行,也可以作为集成框架的一部分运行。该框架可以包含专门的工具,包括用于数学操作的符号推理模块,用于分析特定实验和模拟数据的框架,以及用于综合物理理论和科学文献见解的机制。我们首先考察物理界是否应该积极开发和完善专用模型,而不是仅仅依赖于商业法学硕士。然后,我们概述了如何通过物理学、计算机科学和科学哲学专家之间的跨学科合作来实现lpm。为了有效地整合这些模型,我们确定了三个关键支柱:发展、评估和哲学反思。开发的重点是构建能够处理物理文本、数学公式和各种物理数据的模型。评估通过测试和基准测试来评估准确性和可靠性。最后,《哲学反思》包含了对物理学法学硕士更广泛含义的分析,包括它们产生新科学理解的潜力,以及在研究中可能出现的新的合作动力。受粒子物理实验合作组织结构的启发,我们提出了一种类似的跨学科合作方法来建立和完善大型物理模型。该路线图提供了具体的目标,定义了实现这些目标的途径,并确定了实现特定于物理的大规模人工智能模型必须解决的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信