Exact solutions and Bäcklund transformations for an extended second Painlevé equation

IF 1.1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
A. Pickering, Á. Torres Sánchez
{"title":"Exact solutions and Bäcklund transformations for an extended second Painlevé equation","authors":"A. Pickering,&nbsp;Á. Torres Sánchez","doi":"10.1134/S0040577925090090","DOIUrl":null,"url":null,"abstract":"<p> We consider an extended version of the second Painlevé equation <span>\\((\\mathrm P_{\\mathrm{II}})\\)</span>, which appears as the simplest member of a recently-derived extended second Painlevé hierarchy. For this third-order system we consider the application of the Ablowitz–Ramani–Segur algorithm, use its auto-Bäcklund transformations ( auto-BTs) to construct sequences of rational solutions and solutions defined in terms of Bessel functions, the latter constituting the analogues for the extended <span>\\(\\mathrm P_{\\mathrm{II}}\\)</span> of the well-known Airy function solutions of <span>\\(\\mathrm P_{\\mathrm{II}}\\)</span>. In addition, we present two new Bäcklund transformations, which extend the Schwarzian <span>\\(\\mathrm P_{\\mathrm{II}}\\)</span> equation due to Weiss and an auto-BT due to Gambier. Finally, we use the auto-BTs of extended <span>\\(\\mathrm P_{\\mathrm{II}}\\)</span> also to derive a new third-order discrete system. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"224 3","pages":"1653 - 1663"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925090090","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an extended version of the second Painlevé equation \((\mathrm P_{\mathrm{II}})\), which appears as the simplest member of a recently-derived extended second Painlevé hierarchy. For this third-order system we consider the application of the Ablowitz–Ramani–Segur algorithm, use its auto-Bäcklund transformations ( auto-BTs) to construct sequences of rational solutions and solutions defined in terms of Bessel functions, the latter constituting the analogues for the extended \(\mathrm P_{\mathrm{II}}\) of the well-known Airy function solutions of \(\mathrm P_{\mathrm{II}}\). In addition, we present two new Bäcklund transformations, which extend the Schwarzian \(\mathrm P_{\mathrm{II}}\) equation due to Weiss and an auto-BT due to Gambier. Finally, we use the auto-BTs of extended \(\mathrm P_{\mathrm{II}}\) also to derive a new third-order discrete system.

一类扩展二阶painlevleve方程的精确解和Bäcklund变换
我们考虑第二个painlev方程\((\mathrm P_{\mathrm{II}})\)的扩展版本,它是最近派生的扩展的第二个painlev层次结构中最简单的成员。对于这个三阶系统,我们考虑Ablowitz-Ramani-Segur算法的应用,使用它的auto-Bäcklund变换(auto- bt)来构造有理数解和用贝塞尔函数定义的解的序列,后者构成了著名的\(\mathrm P_{\mathrm{II}}\)的Airy函数解的扩展\(\mathrm P_{\mathrm{II}}\)的类似物。此外,我们提出了两个新的Bäcklund变换,它们扩展了由Weiss提出的Schwarzian \(\mathrm P_{\mathrm{II}}\)方程和由Gambier提出的自动bt。最后,我们利用扩展\(\mathrm P_{\mathrm{II}}\)的auto- bt也推导了一个新的三阶离散系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信