Shanks extrapolation method and exact solutions of equations of nonlinear mathematical physics

IF 1.1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
A. I. Zemlyanukhin, A. V. Bochkarev, Yu. A. Blinkov
{"title":"Shanks extrapolation method and exact solutions of equations of nonlinear mathematical physics","authors":"A. I. Zemlyanukhin,&nbsp;A. V. Bochkarev,&nbsp;Yu. A. Blinkov","doi":"10.1134/S0040577925090120","DOIUrl":null,"url":null,"abstract":"<p> We propose a procedure for constructing exact solutions of equations of nonlinear mathematical physics based on the application of the Shanks extrapolation method to a segment of a perturbation series in powers of exponents that are solutions of a sequence of linear problems. We assume that a sequence of partial sums of the power series belongs to the Shanks transformation kernel. In the Shanks method, the initial value of the order of the linear combination is chosen to be one greater than the order of the pole of the solution to the original equation. The efficiency of the method is demonstrated in the construction of exact localized solutions of a nonlinear heterogeneous ordinary differential equation, the generalized Tzitzéica equation, as well as its difference and differential–difference analogues. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"224 3","pages":"1681 - 1693"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925090120","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a procedure for constructing exact solutions of equations of nonlinear mathematical physics based on the application of the Shanks extrapolation method to a segment of a perturbation series in powers of exponents that are solutions of a sequence of linear problems. We assume that a sequence of partial sums of the power series belongs to the Shanks transformation kernel. In the Shanks method, the initial value of the order of the linear combination is chosen to be one greater than the order of the pole of the solution to the original equation. The efficiency of the method is demonstrated in the construction of exact localized solutions of a nonlinear heterogeneous ordinary differential equation, the generalized Tzitzéica equation, as well as its difference and differential–difference analogues.

Shanks外推法与非线性数学物理方程的精确解
我们提出了一种构造非线性数学物理方程精确解的方法,该方法基于Shanks外推法对作为一系列线性问题解的指数幂扰动级数的一段的应用。我们假设幂级数的部分和序列属于香克斯变换核。在Shanks方法中,选择线性组合阶的初始值比原方程解的极点阶大1。在构造非线性非均质常微分方程、广义tzitzacimica方程及其差分和微分-差分类似方程的精确定域解中,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信