Effect of Rubidium/Cesium Doping on (Lithium, Sodium, Potassium)-Ion Batteries through Germanium Silicon Oxide Anode Materials: An Architectural Design for Energy Storage Devices

IF 1.4 4区 化学 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
F. Mollaamin, M. Monajjemi
{"title":"Effect of Rubidium/Cesium Doping on (Lithium, Sodium, Potassium)-Ion Batteries through Germanium Silicon Oxide Anode Materials: An Architectural Design for Energy Storage Devices","authors":"F. Mollaamin,&nbsp;M. Monajjemi","doi":"10.1134/S1990793125700435","DOIUrl":null,"url":null,"abstract":"<p>In this work, rubidium and cesium ions are studied as electrolyte additives for lithium-, sodium- or potassium-ion batteries. Therefore, it has been evaluated the promising alternative alkali metals of Rb- or Cs-doped lithium-, sodium-or potassium-ion batteries. A vast study on H-capture by LiRb (GeO–SiO), LiCs(GeO–SiO), NaRb(GeO–SiO), NaCs(GeO–SiO), KRb(GeO–SiO), KCs(GeO–SiO), was carried out including using density functional theory (DFT) computations at the CAM–B3LYP–D3/LANL2DZ,6–311+G(<i>d</i>, <i>p</i>) level of theory. The hypothesis of the hydrogen adsorption phenomenon was figured out by density distributions of CDD, TDOS, LOL for nanoclusters of LiRb(GeO–SiO)–2H<sub>2</sub>, LiCs(GeO–SiO)–2H<sub>2</sub>, NaRb(GeO–SiO)–2H<sub>2</sub>, NaCs(GeO–SiO)–2H<sub>2</sub>, KRb(GeO–SiO)–2H<sub>2</sub>, KCs(GeO–SiO)–2H<sub>2</sub>. As the benefits of lithium, sodium or potassium over Ge/Si possess its higher electron and hole motion, permitting lithium, sodium or potassium devices to operate at higher frequencies than Ge/Si devices. A small portion of Rb or Cs entered the Ge–Si layer to replace the Li, Na or K sites might improve the structural stability of the electrode material at high multiplicity, thereby improving the capacity retention rate. Finally, the results have shown that the cluster of KCs(GeO–SiO), LiCs(GeO–SiO) and NaCs(GeO–SiO) may have the most tensity for electron accepting owing to hydrogen grabbing. Among these, K-ion batteries seem to show the most promise in terms of Rb or Cs doping.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"19 3","pages":"737 - 751"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793125700435","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, rubidium and cesium ions are studied as electrolyte additives for lithium-, sodium- or potassium-ion batteries. Therefore, it has been evaluated the promising alternative alkali metals of Rb- or Cs-doped lithium-, sodium-or potassium-ion batteries. A vast study on H-capture by LiRb (GeO–SiO), LiCs(GeO–SiO), NaRb(GeO–SiO), NaCs(GeO–SiO), KRb(GeO–SiO), KCs(GeO–SiO), was carried out including using density functional theory (DFT) computations at the CAM–B3LYP–D3/LANL2DZ,6–311+G(d, p) level of theory. The hypothesis of the hydrogen adsorption phenomenon was figured out by density distributions of CDD, TDOS, LOL for nanoclusters of LiRb(GeO–SiO)–2H2, LiCs(GeO–SiO)–2H2, NaRb(GeO–SiO)–2H2, NaCs(GeO–SiO)–2H2, KRb(GeO–SiO)–2H2, KCs(GeO–SiO)–2H2. As the benefits of lithium, sodium or potassium over Ge/Si possess its higher electron and hole motion, permitting lithium, sodium or potassium devices to operate at higher frequencies than Ge/Si devices. A small portion of Rb or Cs entered the Ge–Si layer to replace the Li, Na or K sites might improve the structural stability of the electrode material at high multiplicity, thereby improving the capacity retention rate. Finally, the results have shown that the cluster of KCs(GeO–SiO), LiCs(GeO–SiO) and NaCs(GeO–SiO) may have the most tensity for electron accepting owing to hydrogen grabbing. Among these, K-ion batteries seem to show the most promise in terms of Rb or Cs doping.

Abstract Image

通过氧化锗硅负极材料掺杂铷/铯对(锂、钠、钾)离子电池的影响:一种储能装置的结构设计
本文研究了铷和铯离子作为锂离子、钠离子和钾离子电池的电解质添加剂。因此,人们对Rb或cs掺杂锂离子电池、钠离子电池或钾离子电池等有前途的碱金属替代品进行了评价。在cam - b3lypp - d3 /LANL2DZ, 6-311 +G(d, p)理论水平上,利用密度泛函数理论(DFT)计算了LiRb (GeO-SiO)、LiCs(GeO-SiO)、NaRb(GeO-SiO)、NaCs(GeO-SiO)、KRb(GeO-SiO)、KCs(GeO-SiO)对h的捕获进行了大量研究。通过对LiRb(GeO-SiO) -2H2、LiCs(GeO-SiO) -2H2、NaRb(GeO-SiO) -2H2、NaCs(GeO-SiO) -2H2、KRb(GeO-SiO) -2H2、KCs(GeO-SiO) -2H2纳米簇CDD、TDOS、LOL的密度分布,提出了氢吸附现象的假设。由于锂、钠或钾比Ge/Si具有更高的电子和空穴运动,因此锂、钠或钾器件可以在比Ge/Si器件更高的频率下工作。少量Rb或Cs进入Ge-Si层取代Li、Na或K位,可以提高电极材料在高复数下的结构稳定性,从而提高容量保持率。最后,结果表明,KCs(GeO-SiO)、LiCs(GeO-SiO)和NaCs(GeO-SiO)簇可能由于吸氢而具有最大的电子接受强度。其中,在Rb或Cs掺杂方面,k离子电池似乎显示出最有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Physical Chemistry B
Russian Journal of Physical Chemistry B 化学-物理:原子、分子和化学物理
CiteScore
2.20
自引率
71.40%
发文量
106
审稿时长
4-8 weeks
期刊介绍: Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信