V. I. Erofeev, A. T. Il’ichev, V. Ya. Tomashpolskii
{"title":"Asymptotics of the Evans function for subsonic solitary waves in a micropolar electrically conductive elastic medium","authors":"V. I. Erofeev, A. T. Il’ichev, V. Ya. Tomashpolskii","doi":"10.1134/S0040577925090065","DOIUrl":null,"url":null,"abstract":"<p> As a result of the linearization of nonlinear equations for displacements in a nonlinear model of elastically conductive micropolar medium in a magnetic field on the background of a soliton solution describing subsonic solitary waves, we obtain an inhomogeneous scalar linear equation. This equation leads to a generalized spectral problem. To establish the instability of the mentioned solitary waves, the existence of an unstable eigenvalue (with a positive real part) must be verified. The corresponding proof is carried out by constructing the Evans function that depends only on the spectral parameter. This function is analytic in the right complex half-plane, and its zeros coincide with the unstable eigenvalues. It is proved that the Evans function tends to unity at infinity. This property of the Evans function, for some of its local properties in a neighborhood of the origin, allows us to conclude that it has zeros on the positive real semi-axis and therefore the subsonic solitary wave is unstable. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"224 3","pages":"1613 - 1624"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925090065","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As a result of the linearization of nonlinear equations for displacements in a nonlinear model of elastically conductive micropolar medium in a magnetic field on the background of a soliton solution describing subsonic solitary waves, we obtain an inhomogeneous scalar linear equation. This equation leads to a generalized spectral problem. To establish the instability of the mentioned solitary waves, the existence of an unstable eigenvalue (with a positive real part) must be verified. The corresponding proof is carried out by constructing the Evans function that depends only on the spectral parameter. This function is analytic in the right complex half-plane, and its zeros coincide with the unstable eigenvalues. It is proved that the Evans function tends to unity at infinity. This property of the Evans function, for some of its local properties in a neighborhood of the origin, allows us to conclude that it has zeros on the positive real semi-axis and therefore the subsonic solitary wave is unstable.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.