Asymptotics of the Evans function for subsonic solitary waves in a micropolar electrically conductive elastic medium

IF 1.1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
V. I. Erofeev, A. T. Il’ichev, V. Ya. Tomashpolskii
{"title":"Asymptotics of the Evans function for subsonic solitary waves in a micropolar electrically conductive elastic medium","authors":"V. I. Erofeev,&nbsp;A. T. Il’ichev,&nbsp;V. Ya. Tomashpolskii","doi":"10.1134/S0040577925090065","DOIUrl":null,"url":null,"abstract":"<p> As a result of the linearization of nonlinear equations for displacements in a nonlinear model of elastically conductive micropolar medium in a magnetic field on the background of a soliton solution describing subsonic solitary waves, we obtain an inhomogeneous scalar linear equation. This equation leads to a generalized spectral problem. To establish the instability of the mentioned solitary waves, the existence of an unstable eigenvalue (with a positive real part) must be verified. The corresponding proof is carried out by constructing the Evans function that depends only on the spectral parameter. This function is analytic in the right complex half-plane, and its zeros coincide with the unstable eigenvalues. It is proved that the Evans function tends to unity at infinity. This property of the Evans function, for some of its local properties in a neighborhood of the origin, allows us to conclude that it has zeros on the positive real semi-axis and therefore the subsonic solitary wave is unstable. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"224 3","pages":"1613 - 1624"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925090065","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As a result of the linearization of nonlinear equations for displacements in a nonlinear model of elastically conductive micropolar medium in a magnetic field on the background of a soliton solution describing subsonic solitary waves, we obtain an inhomogeneous scalar linear equation. This equation leads to a generalized spectral problem. To establish the instability of the mentioned solitary waves, the existence of an unstable eigenvalue (with a positive real part) must be verified. The corresponding proof is carried out by constructing the Evans function that depends only on the spectral parameter. This function is analytic in the right complex half-plane, and its zeros coincide with the unstable eigenvalues. It is proved that the Evans function tends to unity at infinity. This property of the Evans function, for some of its local properties in a neighborhood of the origin, allows us to conclude that it has zeros on the positive real semi-axis and therefore the subsonic solitary wave is unstable.

微极导电弹性介质中亚音速孤波的Evans函数渐近性
在描述亚音速孤立波的孤子解的背景下,对磁场中弹性导电微极介质非线性模型的非线性位移方程进行线性化,得到了一个非齐次标量线性方程。这个方程引出了一个广义谱问题。为了建立上述孤立波的不稳定性,必须验证不稳定特征值(实部为正)的存在性。通过构造只依赖于谱参数的埃文斯函数来进行相应的证明。该函数在右复半平面上是解析的,其零点与不稳定特征值重合。证明了埃文斯函数在无穷远处趋于统一。埃文斯函数的这个性质,由于它在原点附近的一些局部性质,使我们可以得出结论,它在正实半轴上有零,因此亚音速孤立波是不稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信