Axisymmetric Elastic Fields in Transversely Isotropic Layered Half-Space with Cavity Subjected to Internal Pressure

IF 1.4 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Sha Xiao, Zhongqi Quentin Yue
{"title":"Axisymmetric Elastic Fields in Transversely Isotropic Layered Half-Space with Cavity Subjected to Internal Pressure","authors":"Sha Xiao,&nbsp;Zhongqi Quentin Yue","doi":"10.1007/s10659-025-10148-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper develops an axisymmetric boundary element method (BEM) for analyzing a transversely isotropic (TI) layered half-space with an internal cavity subjected to pressure. The BEM formulation utilizes the fundamental solution of a TI layered solid of infinite extent under body forces uniformly concentrated along a circular ring. Three types of isoparametric elements are used to discretize the core region surrounding the cavity and an infinite element is utilized to discretize the external boundary away from the cavity. A novel numerical quadrature scheme is introduced to calculate the regular and singular integrals in the BEM formulation. Numerical verifications are carried out to confirm the accuracy and computational efficiency of the proposed BEM. The numerical results demonstrate the influence of the heterogeneity and anisotropy of the TI layered solid on the elastic fields in the surrounding rocks around the cavity of either sphere or ellipsoid.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10659-025-10148-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-025-10148-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops an axisymmetric boundary element method (BEM) for analyzing a transversely isotropic (TI) layered half-space with an internal cavity subjected to pressure. The BEM formulation utilizes the fundamental solution of a TI layered solid of infinite extent under body forces uniformly concentrated along a circular ring. Three types of isoparametric elements are used to discretize the core region surrounding the cavity and an infinite element is utilized to discretize the external boundary away from the cavity. A novel numerical quadrature scheme is introduced to calculate the regular and singular integrals in the BEM formulation. Numerical verifications are carried out to confirm the accuracy and computational efficiency of the proposed BEM. The numerical results demonstrate the influence of the heterogeneity and anisotropy of the TI layered solid on the elastic fields in the surrounding rocks around the cavity of either sphere or ellipsoid.

内压作用下横向各向同性层状半空间的轴对称弹性场
本文建立了一种轴对称边界元法,用于分析具有受压腔的横向各向同性层状半空间。边界元公式利用了无限延伸的TI层状固体的基本解,在沿环形均匀集中的体力下。采用三种等参单元对围绕腔体的核心区域进行离散,采用无限单元对远离腔体的外部边界进行离散。引入了一种新的数值积分格式来计算边界元公式中的正则积分和奇异积分。数值验证验证了所提出边界元法的精度和计算效率。数值结果显示了TI层状固体的非均质性和各向异性对球体和椭球腔周围围岩弹性场的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信