{"title":"Collision avoidance control of multiple UAVs using collision cones and control barrier functions","authors":"Thiviyathinesvaran Palani, Supuni Wijesundera, Hiroaki Fukushima","doi":"10.1007/s10015-025-01020-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on the collision avoidance of multiple UAVs using collision cones (CCs) and control barrier functions (CBFs). Each UAV is separately controlled toward a given goal while avoiding collision with other UAVs, which are considered moving obstacles. We first propose a new collision avoidance control method based on CCs and CBFs without numerical optimization. This method significantly lowers computational costs compared to existing optimization-based approaches. In addition, we propose a new optimization-based method using CCs and CBFs. A key feature of the proposed method is that the desired control input used in numerical optimization is modified based on CCs and CBFs, in contrast to existing methods that use a desired control input designed without considering obstacles. We evaluate and compare the effectiveness of the proposed methods through extensive simulations. Experimental results using real quadrotors are also shown.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"30 3","pages":"546 - 554"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-025-01020-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the collision avoidance of multiple UAVs using collision cones (CCs) and control barrier functions (CBFs). Each UAV is separately controlled toward a given goal while avoiding collision with other UAVs, which are considered moving obstacles. We first propose a new collision avoidance control method based on CCs and CBFs without numerical optimization. This method significantly lowers computational costs compared to existing optimization-based approaches. In addition, we propose a new optimization-based method using CCs and CBFs. A key feature of the proposed method is that the desired control input used in numerical optimization is modified based on CCs and CBFs, in contrast to existing methods that use a desired control input designed without considering obstacles. We evaluate and compare the effectiveness of the proposed methods through extensive simulations. Experimental results using real quadrotors are also shown.