Analysis of the strong vertices \(\Lambda _cD^{(*)}N^*(1535)\) and \(\Lambda _bB^{(*)}N^*(1535)\) in QCD sum rules

IF 4.8 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Jie Lu, Dian-Yong Chen, Guo-Liang Yu, Zhi-Gang Wang, Ze Zhou
{"title":"Analysis of the strong vertices \\(\\Lambda _cD^{(*)}N^*(1535)\\) and \\(\\Lambda _bB^{(*)}N^*(1535)\\) in QCD sum rules","authors":"Jie Lu,&nbsp;Dian-Yong Chen,&nbsp;Guo-Liang Yu,&nbsp;Zhi-Gang Wang,&nbsp;Ze Zhou","doi":"10.1140/epjc/s10052-025-14754-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we firstly analyze the mass and pole residue of negative parity nucleon <span>\\(N^*(1535)\\)</span> within the two-point QCD sum rules. Basing on these results, we continuously study the strong coupling constants of vertices <span>\\(\\Lambda _cDN^*\\)</span>, <span>\\(\\Lambda _cD^*N^*\\)</span>, <span>\\(\\Lambda _bBN^*\\)</span> and <span>\\(\\Lambda _bB^*N^*\\)</span> in the framework of three-point QCD sum rules. At hadron side, all possible couplings of interpolating current to hadronic states are considered. At QCD side, the contributions of vacuum condensate terms <span>\\(\\langle \\bar{q}q\\rangle \\)</span>, <span>\\(\\langle g_s^2GG\\rangle \\)</span>, <span>\\(\\langle \\bar{q} g_s\\sigma Gq\\rangle \\)</span>, <span>\\(\\langle \\bar{q}q\\rangle ^2\\)</span> and <span>\\(g_s^2\\langle \\bar{q}q\\rangle ^2\\)</span> are also considered. By setting the four momentum of <span>\\(D^{(*)}[B^{(*)}]\\)</span> mesons off-shell, the strong coupling constants in deep space-like regions (<span>\\(Q^2=-q^2\\gg \\Lambda _{QCD}^2\\)</span>) are obtained. Then, the momentum dependent coupling constants in space-like regions are fitted into analytical function <span>\\(G(Q^2)\\)</span> and are extrapolated into time-like regions (<span>\\(Q^2&lt;0\\)</span>). Finally, the on-shell values of strong coupling constants are obtained by taking <span>\\(Q^{2}=-m_{D^{(*)}[B^{(*)}]}^2\\)</span>. The results are <span>\\(G_{\\Lambda _cDN^*}(Q^2=-m_D^2)=4.06^{+0.96}_{-0.75}\\)</span>, <span>\\(f_{\\Lambda _cD^*N^*}(Q^2=-m_{D^*}^2)=3.73^{+0.68}_{-0.16}\\)</span>, <span>\\(g_{\\Lambda _cD^*N^*}(Q^2=-m_{D^*}^2)=9.22^{+3.16}_{-0.36}\\)</span>, <span>\\(G_{\\Lambda _bBN^*}(Q^2=-m_B^2)=9.11^{+1.54}_{-1.61}\\)</span>, <span>\\(f_{\\Lambda _bB^*N^*}(Q^2=-m_{B^*}^2)=8.55^{+2.69}_{-2.21}\\)</span> and <span>\\(g_{\\Lambda _bB^*N^*}(Q^2=-m_{B^*}^2)=-\\,0.25^{+0.16}_{-0.01}\\)</span>.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14754-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14754-1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we firstly analyze the mass and pole residue of negative parity nucleon \(N^*(1535)\) within the two-point QCD sum rules. Basing on these results, we continuously study the strong coupling constants of vertices \(\Lambda _cDN^*\), \(\Lambda _cD^*N^*\), \(\Lambda _bBN^*\) and \(\Lambda _bB^*N^*\) in the framework of three-point QCD sum rules. At hadron side, all possible couplings of interpolating current to hadronic states are considered. At QCD side, the contributions of vacuum condensate terms \(\langle \bar{q}q\rangle \), \(\langle g_s^2GG\rangle \), \(\langle \bar{q} g_s\sigma Gq\rangle \), \(\langle \bar{q}q\rangle ^2\) and \(g_s^2\langle \bar{q}q\rangle ^2\) are also considered. By setting the four momentum of \(D^{(*)}[B^{(*)}]\) mesons off-shell, the strong coupling constants in deep space-like regions (\(Q^2=-q^2\gg \Lambda _{QCD}^2\)) are obtained. Then, the momentum dependent coupling constants in space-like regions are fitted into analytical function \(G(Q^2)\) and are extrapolated into time-like regions (\(Q^2<0\)). Finally, the on-shell values of strong coupling constants are obtained by taking \(Q^{2}=-m_{D^{(*)}[B^{(*)}]}^2\). The results are \(G_{\Lambda _cDN^*}(Q^2=-m_D^2)=4.06^{+0.96}_{-0.75}\), \(f_{\Lambda _cD^*N^*}(Q^2=-m_{D^*}^2)=3.73^{+0.68}_{-0.16}\), \(g_{\Lambda _cD^*N^*}(Q^2=-m_{D^*}^2)=9.22^{+3.16}_{-0.36}\), \(G_{\Lambda _bBN^*}(Q^2=-m_B^2)=9.11^{+1.54}_{-1.61}\), \(f_{\Lambda _bB^*N^*}(Q^2=-m_{B^*}^2)=8.55^{+2.69}_{-2.21}\) and \(g_{\Lambda _bB^*N^*}(Q^2=-m_{B^*}^2)=-\,0.25^{+0.16}_{-0.01}\).

QCD和规则中强顶点\(\Lambda _cD^{(*)}N^*(1535)\)和\(\Lambda _bB^{(*)}N^*(1535)\)的分析
本文首先分析了负宇称核子\(N^*(1535)\)在两点QCD求和规则中的质量和极余。在此基础上,我们继续研究三点QCD和规则框架下顶点\(\Lambda _cDN^*\)、\(\Lambda _cD^*N^*\)、\(\Lambda _bBN^*\)和\(\Lambda _bB^*N^*\)的强耦合常数。在强子侧,考虑了插入电流与强子态的所有可能耦合。在QCD端,还考虑了真空冷凝项\(\langle \bar{q}q\rangle \)、\(\langle g_s^2GG\rangle \)、\(\langle \bar{q} g_s\sigma Gq\rangle \)、\(\langle \bar{q}q\rangle ^2\)和\(g_s^2\langle \bar{q}q\rangle ^2\)的贡献。通过设置\(D^{(*)}[B^{(*)}]\)介子离壳的四个动量,得到了类深空区域(\(Q^2=-q^2\gg \Lambda _{QCD}^2\))的强耦合常数。然后,将类空区域的动量依赖耦合常数拟合为解析函数\(G(Q^2)\),并外推到类时区域(\(Q^2<0\))。最后,用\(Q^{2}=-m_{D^{(*)}[B^{(*)}]}^2\)求出了强耦合常数的壳上值。结果是\(G_{\Lambda _cDN^*}(Q^2=-m_D^2)=4.06^{+0.96}_{-0.75}\), \(f_{\Lambda _cD^*N^*}(Q^2=-m_{D^*}^2)=3.73^{+0.68}_{-0.16}\), \(g_{\Lambda _cD^*N^*}(Q^2=-m_{D^*}^2)=9.22^{+3.16}_{-0.36}\), \(G_{\Lambda _bBN^*}(Q^2=-m_B^2)=9.11^{+1.54}_{-1.61}\), \(f_{\Lambda _bB^*N^*}(Q^2=-m_{B^*}^2)=8.55^{+2.69}_{-2.21}\)和\(g_{\Lambda _bB^*N^*}(Q^2=-m_{B^*}^2)=-\,0.25^{+0.16}_{-0.01}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信