{"title":"Infinitely many solutions for Kirchhoff-type equations involving critical growth in Orlicz-Sobolev with negative energies","authors":"Elmostafa Bendib, Mustapha Khiddi","doi":"10.21136/AM.2025.0059-25","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate a class of Kirchhoff-type equations characterized by critical growth within Orlicz-Sobolev spaces. The main result establishes the existence of infinitely many solutions with negative energy. Using an adapted concentration-compactness principle and advanced variational methods, we overcome key challenges such as non-compactness and non-differentiability to the associated functionals. This work extends existing results to more general functional spaces, offering new insights into nonlocal nonlinear equations.</p></div>","PeriodicalId":55505,"journal":{"name":"Applications of Mathematics","volume":"70 3","pages":"441 - 456"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2025.0059-25","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate a class of Kirchhoff-type equations characterized by critical growth within Orlicz-Sobolev spaces. The main result establishes the existence of infinitely many solutions with negative energy. Using an adapted concentration-compactness principle and advanced variational methods, we overcome key challenges such as non-compactness and non-differentiability to the associated functionals. This work extends existing results to more general functional spaces, offering new insights into nonlocal nonlinear equations.
期刊介绍:
Applications of Mathematics publishes original high quality research papers that are directed towards applications of mathematical methods in various branches of science and engineering.
The main topics covered include:
- Mechanics of Solids;
- Fluid Mechanics;
- Electrical Engineering;
- Solutions of Differential and Integral Equations;
- Mathematical Physics;
- Optimization;
- Probability
Mathematical Statistics.
The journal is of interest to a wide audience of mathematicians, scientists and engineers concerned with the development of scientific computing, mathematical statistics and applicable mathematics in general.