Wang Liliang, Jia Yuxin, Luo Yuanqian, Zhu Zhiyong
{"title":"Study on the Process of Chromium-Free Chemical Conversion Coating of 7075 Aluminum Alloy","authors":"Wang Liliang, Jia Yuxin, Luo Yuanqian, Zhu Zhiyong","doi":"10.1134/S2070205125700315","DOIUrl":null,"url":null,"abstract":"<p>To replace the traditional Alodine chemical conversion coating on aircraft, this paper uses potassium fluotitanate and potassium fluorozirconate as main salts, potassium permanganate as an oxidizing agent and coloring agent, acrylic acid as a complexing agent, and magnesium sulfate as a promoter to prepare a chromium-free environmentally friendly chemical conversion coating on 7075 aluminum alloy. Methods such as drop test, electrochemical analysis, electron microscopy, and elemental analysis were used to determine the optimal film-forming formula and process conditions through single-factor experiments and orthogonal experiments: 6 g/L K<sub>2</sub>TiF<sub>6</sub>, 6 g/L K<sub>2</sub>ZrF<sub>6</sub>, 4 g/L KMnO<sub>4</sub>, 10 mL/L acrylic acid, 2 g/L MgSO<sub>4</sub>; pH 3.7, temperature 35°C, film formation time 6 min. The resulting conversion film is golden yellow, with significantly improved corrosion resistance. This paper also adopts a chromium-free pre-clean instead of the traditional triacid deoxidation pre-clean, achieving chromium-free throughout the entire production process. This has significant guiding implications for future practices in environmental protection in aircraft surface treatment processes.</p>","PeriodicalId":745,"journal":{"name":"Protection of Metals and Physical Chemistry of Surfaces","volume":"61 2","pages":"448 - 455"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protection of Metals and Physical Chemistry of Surfaces","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S2070205125700315","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
To replace the traditional Alodine chemical conversion coating on aircraft, this paper uses potassium fluotitanate and potassium fluorozirconate as main salts, potassium permanganate as an oxidizing agent and coloring agent, acrylic acid as a complexing agent, and magnesium sulfate as a promoter to prepare a chromium-free environmentally friendly chemical conversion coating on 7075 aluminum alloy. Methods such as drop test, electrochemical analysis, electron microscopy, and elemental analysis were used to determine the optimal film-forming formula and process conditions through single-factor experiments and orthogonal experiments: 6 g/L K2TiF6, 6 g/L K2ZrF6, 4 g/L KMnO4, 10 mL/L acrylic acid, 2 g/L MgSO4; pH 3.7, temperature 35°C, film formation time 6 min. The resulting conversion film is golden yellow, with significantly improved corrosion resistance. This paper also adopts a chromium-free pre-clean instead of the traditional triacid deoxidation pre-clean, achieving chromium-free throughout the entire production process. This has significant guiding implications for future practices in environmental protection in aircraft surface treatment processes.
期刊介绍:
Protection of Metals and Physical Chemistry of Surfaces is an international peer reviewed journal that publishes articles covering all aspects of the physical chemistry of materials and interfaces in various environments. The journal covers all related problems of modern physical chemistry and materials science, including: physicochemical processes at interfaces; adsorption phenomena; complexing from molecular and supramolecular structures at the interfaces to new substances, materials and coatings; nanoscale and nanostructured materials and coatings, composed and dispersed materials; physicochemical problems of corrosion, degradation and protection; investigation methods for surface and interface systems, processes, structures, materials and coatings. No principe restrictions exist related systems, types of processes, methods of control and study. The journal welcomes conceptual, theoretical, experimental, methodological, instrumental, environmental, and all other possible studies.